A208765 Triangle of coefficients of polynomials u(n,x) jointly generated with A208766; see the Formula section.
1, 1, 2, 1, 4, 6, 1, 6, 18, 14, 1, 8, 36, 56, 38, 1, 10, 60, 140, 190, 94, 1, 12, 90, 280, 570, 564, 246, 1, 14, 126, 490, 1330, 1974, 1722, 622, 1, 16, 168, 784, 2660, 5264, 6888, 4976, 1606, 1, 18, 216, 1176, 4788, 11844, 20664, 22392, 14454, 4094, 1
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 4, 6; 1, 6, 18, 14; 1, 8, 36, 56, 38; First five polynomials u(n,x): 1 1 + 2x 1 + 4x + 6x^2 1 + 6x + 18x^2 + 14x^3 1 + 8x + 36x^2 + 56x^3 + 38x^4 (1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 4, 6, 0; 1, 6, 18, 14, 0; 1, 8, 36, 56, 38, 0; 1, 10, 60, 140, 190, 94, 0. - _Philippe Deléham_, Mar 18 2012
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208765 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208766 *) Rest[CoefficientList[CoefficientList[Series[(1-x-y*x+2*y*x^2-4*y^2*x^2)/( 1-2*x-y*x+x^2+y*x^2-4*y^2*x^2), {x,0,20}, {y,0,20}], x], y]//Flatten] (* G. C. Greubel, Mar 28 2018 *)
Formula
u(n,x) = u(n-1,x) + 2*x*v(n-1,x),
v(n,x) = 2*x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x-y*x+2*y*x^2-4*y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-4*y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 4*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = binomial(n-1,k)*A026597(k). (End)
Comments