A208766 Triangle of coefficients of polynomials v(n,x) jointly generated with A208765; see the Formula section.
1, 1, 3, 1, 6, 7, 1, 9, 21, 19, 1, 12, 42, 76, 47, 1, 15, 70, 190, 235, 123, 1, 18, 105, 380, 705, 738, 311, 1, 21, 147, 665, 1645, 2583, 2177, 803, 1, 24, 196, 1064, 3290, 6888, 8708, 6424, 2047, 1, 27, 252, 1596, 5922, 15498, 26124, 28908, 18423
Offset: 1
Examples
First five rows: 1; 1, 3; 1, 6, 7; 1, 9, 21, 19; 1, 12, 42, 76, 47; First five polynomials v(n,x): 1 1 + 3x 1 + 6x + 7x^2 1 + 9x + 21x^2 + 19x^3 1 + 12x + 42x^2 + 76x^3 + 47x^4 From _Philippe Deléham_, Mar 20 2012: (Start) (1, 0, 0, 1, 0, 0, ...) DELTA (0, 3, -2/3, -4/3, 0, 0, ...) begins: 1; 1, 0; 1, 3, 0; 1, 6, 7, 0; 1, 9, 21, 19, 0; 1, 12, 42, 76, 47, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208765 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208766 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 20 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x-y*x+3*y*x^2-4*y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-4*y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 4*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments