A208767 Generalized 2-super abundant numbers.
1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 720, 840, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 360360, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 10810800, 12252240, 21621600, 24504480, 36756720, 61261200
Offset: 1
Keywords
Examples
For i=24, sigma_2(24)/(24^2)=850/576=1.47569, a new record, thus 24 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..251
- S. Sivasankaranarayana Pillai, Highly abundant numbers, Bulletin of the Calcutta Mathematical Society, Vol. 35, No. 1 (1943), pp. 141-156.
- S. Sivasankaranarayana Pillai, On numbers analogous to highly composite numbers of Ramanujan, Rajah Sir Annamalai Chettiar Commemoration Volume, ed. Dr. B. V. Narayanaswamy Naidu, Annamalai University, 1941, pp. 697-704.
- Srinivasa Ramanujan, Highly composite numbers, Annotated and with a foreword by Jean-Louis Nicolas and Guy Robin, The Ramanujan Journal, Vol. 1, No. 2 (1997), pp. 119-153, alternative link.
Crossrefs
Programs
-
Mathematica
s = {1}; a = 1; Do[ If[DivisorSigma[2, n]/(n^2) > a, a = DivisorSigma[2, n]/(n^2); AppendTo[s, n]], {n, 10000000}]; s
Formula
Extensions
More terms from Amiram Eldar, May 12 2019
Comments