cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208772 Number of n-bead necklaces labeled with numbers 1..3 not allowing reversal, with no adjacent beads differing by more than 1.

Original entry on oeis.org

3, 5, 7, 12, 19, 39, 71, 152, 315, 685, 1479, 3294, 7283, 16359, 36791, 83312, 189123, 431393, 986247, 2262308, 5200851, 11985863, 27676615, 64034954, 148406243, 344507805, 800902879, 1864502926, 4346071603, 10142619039, 23696518919, 55420734752, 129742923475, 304014655205, 712985901943, 1673486556648
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Allowing arbitrary differences between the first and last bead gives A215327. [Joerg Arndt, Aug 08 2012]

Examples

			All solutions for n=4:
..1....2....2....2....1....1....1....3....2....1....2....1
..2....2....3....2....1....2....1....3....3....2....2....1
..1....3....2....2....2....3....1....3....3....2....2....1
..2....3....3....3....2....2....1....3....3....2....2....2
		

Crossrefs

Column 3 of A208777.
Cf. A215335 (cyclically smooth Lyndon words with 3 colors).

Programs

  • Mathematica
    sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 3], {n, 1, 36}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
  • PARI
    /* from the Knopfmacher et al. reference */
    default(realprecision,99); /* using floats */
    sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
    vector(66,n, round(sn(n,3)) )
    /* Joerg Arndt, Aug 09 2012 */

Formula

a(n) = Sum_{ d | n } A215335(d). - Joerg Arndt, Aug 13 2012
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124696(n). - Andrew Howroyd, Mar 18 2017