A208853 Array of hypotenuses of primitive Pythagorean triangles when read by SW-NE diagonals.
5, 13, 17, 29, 25, 37, 53, 41, 0, 65, 85, 65, 61, 73, 101, 125, 97, 85, 89, 109, 145, 173, 137, 0, 113, 0, 0, 197, 229, 185, 157, 145, 149, 169, 205, 257, 293, 241, 205, 185, 181, 193, 221, 265, 325, 365, 305, 0, 233, 221, 0
Offset: 1
Examples
Triangle T(n,m): ......m| 1 2 3 4 5 6 7 8 9 10 ... ......v| 2 4 6 8 10 12 14 16 18 20 ... n, u 1, 1 5 2, 3 13 17 3, 5 29 25 37 4, 7 53 41 0 65 5, 9 85 65 61 73 101 6, 11 125 97 85 89 109 145 7, 13 173 137 0 113 0 0 197 8, 15 229 185 157 145 149 169 205 257 9, 17 293 241 205 185 181 193 221 265 325 10,19 365 305 0 233 221 0 0 281 0 401 ... Array c(n,m): ......m| 1 2 3 4 5 6 7 8 9 10 ... ......v| 2 4 6 8 10 12 14 16 18 20 ... n, u 1, 1 5 17 37 65 101 145 197 257 325 401 2 3 13 25 0 73 109 0 205 265 0 409 3, 5 29 41 61 89 0 169 221 281 349 0 4, 7 53 65 85 113 149 193 0 305 373 449 5, 9 85 97 0 145 181 0 277 337 0 481 6, 11 125 137 157 185 221 265 317 377 445 521 7, 13 173 185 205 233 269 313 365 425 493 569 8, 15 229 241 0 289 0 0 421 481 0 0 9, 17 293 305 325 353 389 433 485 545 613 689 10,19 365 377 397 425 461 505 557 617 685 761 ... ------------------------------------------------------------------ Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)): ......m| 1 2 3 4 ... ......v| 2 4 6 8 ... n, u 1, 1 (3,4,5) (15,8,17) (35,12,37) (63,16,65) 2, 3 (5,12,13) (7,24,25) (0,0,0) (55,48,73) 3, 5 (21,20,29) (9,40,41) (11,60,61) (39,80,89) 4, 7 (45,28,53) (33,56,65) (13,84,85) (15,112,113) 5, 9 (77,36,85) (65,72,97) (0,0,0) (17,144,145) 6, 11 (117,44,125) (105,88,137) (85,132,157) (57,176,185) 7, 13 (165,52,173) (153,104,185) (133,156,205) (105,208,233) 8, 15 (221,60,229) (209,120,241) (0,0,0) (161,240,289) 9, 17 (285,68,293) (273,136,305) (253,204,325) (225,272,353) 10,19 (357,76,365) (345,152,377) (325,228,397) (297,304,425) ... Array continued: Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)): ......m| 5 6 7 8 ... ......v| 10 12 14 16 ... n, u 1, 1 (99,20,101) (143,24,145) (195,28,197) (255,32,257) 2 3 (91,60,109) (0,0,0) (187,84,205) (247,96,265) 3, 5 (0,0,0) (119,120,169) (171,140,221) (231,160,281) 4, 7 (51,140,149) (95,168,193) (0,0,0) (207,224,305) 5, 9 (19,180,181) (0,0,0) (115,252,277) (175,288,337) 6, 11 (21,220,221) (23,264,265) (75,308,317) (135,352,377) 7, 13 (69,260,269) (25,312,313) (27,364,365) (87,416,425) 8, 15 (0,0,0) (0,0,0) (29,420,421) (31,480,481) 9, 17 (189,340,389) (145,408,433) (93,476,485) (33,544,545) 10,19 (261,380,461) (217,456,505) (165,532,557) (105,608,617) ... (0,0,0) indicates that no primitive Pythagorean triangle exists for these (n,m) values. The corresponding scaled triples would be (a,b,c) = g*(a/g,b/g,c/g), with g=gcd(u,v)^2 for such non-primitive triangles. E.g., c(n,m) = c(5,3) = 0, (u,v) = (9,6), g = 3^2, (45,108,117) = 3^2*(45/9,108/9,117/9) = 9*(5,12,13). The scaling factor for the primitive triangle (5,12,13), tabulated for c(n,m)=(2,1), is here 9.
References
- I. Niven, H. S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, 5th edition, Wiley & Sons, New York, 1991
Links
- Ron Knott, Pythagorean Triples and Online Calculators.
- E. S. Rowland, Primitive Solutions to x^2 + y^2 = z^2
- Michael Somos, Table of primitive Pythagorean triples and related parameters
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
Formula
T(n,m) = c(n-m+1,m), n >= m >= 1, with c(n,m) := (2*n-1)^2 + (2*m)^2, if gcd(2*n-1, 2*m) = 1 and 0 otherwise.
Comments