cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208854 Array of odd catheti of primitive Pythagorean triangles when read by SW-NE diagonals.

Original entry on oeis.org

3, 5, 15, 21, 7, 35, 45, 9, 0, 63, 77, 33, 11, 55, 99, 117, 65, 13, 39, 91, 143, 165, 105, 0, 15, 0, 0, 195, 221, 153, 85, 17, 51, 119, 187, 255, 285, 209, 133, 57, 19, 95, 171, 247, 323, 357, 273, 0, 105, 21, 0, 0, 231, 0, 399
Offset: 1

Views

Author

Wolfdieter Lang, Mar 05 2012

Keywords

Comments

See the comments, reference and links in A208853. The present array is a(n,m) = abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise. Put u=2*n-1 and v=2*m. The array read by SW-NE diagonals is T(n,m):=a(n-m+1,m), n>=m>=1.
All primitive Pythagorean triples are given by (a(n,m),b(n,m):=A208855(n,m), c(n,m):=A208853(n,m)), n>=1, m>=1. If the entry is (0,0,0) there is no primitive Pythagorean triple for these n and m values. See the example section of A208853 for the array of triples.
Every odd number a=2*k+1, k>=1, appears at least in one primitive triple, namely in (2*k+1, 4*T(k),4*T(k)+1), with the triangular numbers T(k) := A000217(k). This a-value is a=u^2-v^2 with (u,v)=(k+1,k). It may appear in other primitive triples. E.g. a=33=2*16+1 appears in (u,v)=(17,16) ((n,m)= (9,8)) as (33,544,545), and also in (33,56,65) with (n,m)=(4,2) (maybe others).

Examples

			Array a(n,m):
.....m|   1    2    3     4     5     6     7      8     9     10
.....v|   2    4    6     8    10    12    14     16    18     20
n,  u
1,  1     3   15   35    63    99   143   195    255   323    399
2,  3     5    7    0    55    91     0   187    247     0    391
3,  5    21    9   11    39     0   119   171    231   299      0
4,  7    45   33   13    15    51    95     0    207   275    351
5,  9    77   65    0    17    19     0   115    175     0    319
6, 11   117  105   85    57    21    23    75    135   203    279
7, 13   165  153  133   105    69    25    27     87   155    231
8, 15   221  209    0   161     0     0    29     31     0      0
9, 17   285  273  253   225   189   145    93     33    35    111
10,19   357  345  325   297   261   217   165    105    37     39
...
Triangle T(n,m):
.....m|     1     2     3      4     5     6      7     8     9   10
.....v|     2     4     6      8    10    12     14    16    18   20
n,  u
1,  1       3
2,  3       5    15
3,  5      21     7    35
4,  7      45     9     0     63
5,  9      77    33    11     55    99
6  11     117    65    13     39    91   143
7, 13     165   105     0     15     0     0    195
8, 15     221   153    85     17    51   119    187   255
9, 17     285   209   133     57    19    95    171   247   323
10,19     357   273     0    105    21     0      0   231     0  399
...
For the array of triples see the example section of A208853.
		

Crossrefs

Formula

T(n,m)=a(n-m+1,m), n>=m>=1, with a(n,m):=abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise.