A208900 Number of bitstrings of length n which (if having two or more runs) the last two runs have different lengths.
2, 2, 6, 10, 26, 50, 114, 226, 482, 962, 1986, 3970, 8066, 16130, 32514, 65026, 130562, 261122, 523266, 1046530, 2095106, 4190210, 8384514, 16769026, 33546242, 67092482, 134201346, 268402690, 536838146, 1073676290, 2147418114, 4294836226, 8589803522
Offset: 1
Examples
If n=3 the bitstrings where the last runs have different lengths are 111,000,100,011,110,001 so a(3) = 6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,4).
Programs
-
Mathematica
Table[2 + 2^n - 2^(Floor[n/2] + 1) , {n, 1, 40}] LinearRecurrence[{3, 0, -6, 4}, {2, 2, 6, 10}, 40]
Formula
a(n) = 2^n + 2 - 2^(floor(n/2)+1).
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4), a(0) = 2, a(1) = 2, a(2) = 6, a(3) = 10.
G.f.: x*(2 - 4*x + 4*x^3)/((1-x)*(1-2*x^2)*(1-2*x)).
E.g.f.: - 2*cosh(sqrt(2)*x) + 2*exp(x)*(1 + sinh(x)) - sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Jun 06 2023
Comments