A208901 Number of bitstrings of length n (with at least two runs) where the last two runs have different lengths.
0, 0, 4, 8, 24, 48, 112, 224, 480, 960, 1984, 3968, 8064, 16128, 32512, 65024, 130560, 261120, 523264, 1046528, 2095104, 4190208, 8384512, 16769024, 33546240, 67092480, 134201344, 268402688, 536838144, 1073676288, 2147418112, 4294836224, 8589803520
Offset: 1
Examples
If n=3 the bitstrings (with at least two runs) where the last runs have different lengths are 100,011,110,001 so a(3) = 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Aruna Gabhe, Problem 11623, Am. Math. Monthly 119 (2012) 161.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Programs
-
Mathematica
Table[2^n - 2^(Floor[ n/2] + 1) , {n, 1, 40}] LinearRecurrence[{2, 2, -4}, {0, 0, 4}, 40]
Formula
a(n) = 2^n - 2^(floor(n/2)+1).
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3), a(0) = 0, a(1) = 0, a(2) = 4.
G.f.: 4*x^2/((1 - 2*x)*(1 - 2*x^2)).
E.g.f.: 2*(cosh(2*x) - cosh(sqrt(2)*x) + sinh(2*x) - sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Jun 06 2023
Comments