A208906 Triangle of coefficients of polynomials v(n,x) jointly generated with A208905; see the Formula section.
1, 2, 1, 3, 2, 2, 4, 3, 8, 2, 5, 4, 20, 8, 4, 6, 5, 40, 20, 24, 4, 7, 6, 70, 40, 84, 24, 8, 8, 7, 112, 70, 224, 84, 64, 8, 9, 8, 168, 112, 504, 224, 288, 64, 16, 10, 9, 240, 168, 1008, 504, 960, 288, 160, 16, 11, 10, 330, 240, 1848, 1008, 2640, 960, 880, 160, 32
Offset: 1
Examples
First five rows: 1 2...1 3...2...2 4...3...8....2 5...4...20...8...4 First five polynomials v(n,x): 1 2 + x 3 + 2x + 2x^2 4 + 3x + 8x^2 + 2x^3 5 + 4x + 20x^2 + 8x^3 + 4x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208905 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208906 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments