A208911 Triangle of coefficients of polynomials u(n,x) jointly generated with A208912; see the Formula section.
1, 1, 2, 1, 6, 4, 1, 12, 14, 8, 1, 20, 32, 38, 16, 1, 30, 60, 110, 90, 32, 1, 42, 100, 250, 300, 214, 64, 1, 56, 154, 490, 770, 826, 490, 128, 1, 72, 224, 868, 1680, 2408, 2128, 1110, 256, 1, 90, 312, 1428, 3276, 5880, 6888, 5382, 2474, 512, 1, 110, 420
Offset: 1
Examples
First five rows: 1 1...2 1...6....4 1...12...14...8 1...20...32...38...16 First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 4x^2 1 + 12x + 14x^2 + 8x^3 1 + 20x + 32x^2 + 38x^3 + 16x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208911 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208912 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments