A208921 Triangle of coefficients of polynomials u(n,x) jointly generated with A208922; see the Formula section.
1, 1, 2, 1, 8, 2, 1, 18, 10, 4, 1, 32, 36, 28, 4, 1, 50, 100, 108, 36, 8, 1, 72, 230, 324, 196, 80, 8, 1, 98, 462, 840, 772, 440, 104, 16, 1, 128, 840, 1960, 2456, 1840, 752, 208, 16, 1, 162, 1416, 4200, 6744, 6464, 3824, 1488, 272, 32, 1, 200, 2250, 8376
Offset: 1
Examples
First five rows: 1 1...2 1...8....2 1...18...10...4 1...32...36...28...4 First five polynomials u(n,x): 1 1 + 2x 1 + 8x + 2x^2 1 + 18x + 10x^2 + 4x^3 1 + 32x + 36x^2 + 28x^3 + 4x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208921 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208922 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments