A208933 Expansion of phi(q^4) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
1, 2, 4, 8, 16, 28, 48, 80, 128, 202, 312, 472, 704, 1036, 1504, 2160, 3072, 4324, 6036, 8360, 11488, 15680, 21264, 28656, 38400, 51182, 67864, 89552, 117632, 153836, 200352, 259904, 335872, 432480, 554952, 709728, 904784, 1149916, 1457136, 1841200, 2320128
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 16*q^4 + 28*q^5 + 48*q^6 + 80*q^7 + 128*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^4] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Apr 25 2015 *) nmax=60; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(8*k))^5 / ((1-x^k)^2 * (1-x^(4*k))^2 * (1-x^(16*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^16 + A))^2, n))};
Formula
Expansion of eta(q^2) * eta(q^8)^5 / (eta(q) * eta(q^4) * eta(q^16))^2 in powers of q.
Euler transform of period 16 sequence [ 2, 1, 2, 3, 2, 1, 2, -2, 2, 1, 2, 3, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208603.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2*u - 1) * (2*v^2 - 2*v + 1) - u^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = 4 * u * (u - 1) * (2*u - 1) * v * (v - 1) * (2*v - 1) - (u - v)^4.
(-1)^n * a(n) = A112128(n). a(n) = 2 * A123655(n) unless n=0. 2 * a(n) = A007096(n) unless n=0. a(2*n) = A131126(n). a(2*n + 1) = 2 * A093160(n). Convolution inverse of A208604.
G.f.: (Sum_{k in Z} x^(4 * k^2)) / (Sum_{k in Z} (-1)^k * x^(k^2)) = theta_3(x^4) / theta_3(-x).
G.f.: Product_{k>0} ((1 + x^(2*k)) * (1 + x^(4*k)))^3 / ((1 + (-x)^k) * (1 + x^(8*k)))^2.
a(n) ~ exp(sqrt(n)*Pi) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
Comments