cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208970 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and first and second differences in -k..k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 3, 2, 1, 2, 2, 8, 9, 8, 2, 1, 2, 5, 11, 19, 29, 15, 4, 1, 3, 5, 18, 40, 90, 87, 42, 4, 1, 3, 5, 24, 77, 221, 371, 325, 94, 7, 1, 3, 8, 35, 130, 495, 1185, 1755, 1148, 246, 7, 1, 3, 8, 45, 213, 967, 3186, 6883, 8092, 4168, 613, 14, 1
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Table starts
.1..1...1....1....1.....1.....1......1......1......1.......1.......1......1
.1..1...1....2....2.....2.....2......3......3......3.......3.......4......4
.1..1...2....2....2.....5.....5......5......8......8.......8......13.....13
.1..3...4....8...11....18....24.....35.....45.....61......76......98....119
.1..3...9...19...40....77...130....213....325....484.....687.....956...1294
.2..8..29...90..221...495...967...1801...3093...5050....7921...11994..17488
.2.15..87..371.1185..3186..7425..15658..30368..55222...95087..156612.248194
.4.42.325.1755.6883.21830.58791.140429.304536.612054.1154448.2066531

Examples

			Some solutions for n=5, k=5:
.-2...-2...-1...-3...-2...-1...-2...-2...-2...-1...-2...-1...-3...-1...-2...-2
.-2...-1....0...-2...-1...-1...-1....0....0....0....0....0...-1....0....0...-2
..0....1....1....2....2....0....2...-1....2...-1....1....0....2....0....0...-1
..2....2...-1....2....1....2....0....2...-1....0....1....0....3....1....2....3
..2....0....1....1....0....0....1....1....1....2....0....1...-1....0....0....2
		

Crossrefs

Row 2 is A002265(n+4).
Row 3 is A000982(floor(n/3)+1).

Formula

Empirical for row n:
n=2: a(k) = a(k-1) + a(k-4) - a(k-5).
n=3: a(k) = a(k-1) + a(k-3) - a(k-4) + a(k-6) - a(k-7) - a(k-9) + a(k-10).
n=4: a(k) = 2*a(k-1) + a(k-2) - 4*a(k-3) + a(k-4) + 2*a(k-5) - a(k-6).