cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A208963 Number of n-bead necklaces labeled with numbers -1..1 allowing reversal, with sum zero and first and second differences in -1..1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 14, 16, 32, 46, 90, 140, 258, 416, 746, 1245, 2228, 3845, 6929, 12194, 21990, 39113, 70544, 126293, 228168, 410887, 744377, 1346837, 2446229, 4441502, 8084433, 14717678, 26841848, 48977823, 89494630, 163634188, 299532409
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Examples

			All solutions for n=8:
.-1...-1....0...-1
.-1...-1....0...-1
..0....0....0...-1
..0....0....0....0
..1....0....0....1
..1....1....0....1
..0....1....0....1
..0....0....0....0
		

Crossrefs

Column 1 of A208970.

Extensions

a(34)-a(42) from Andrew Howroyd, Mar 12 2017

A208964 Number of n-bead necklaces labeled with numbers -2..2 allowing reversal, with sum zero and first and second differences in -2..2.

Original entry on oeis.org

1, 1, 1, 3, 3, 8, 15, 42, 94, 246, 613, 1645, 4361, 11980, 33023, 92484, 259762, 735310, 2088403, 5961138, 17070131, 49059542, 141402328, 408736264, 1184435227, 3440434897, 10014880408, 29211476668, 85362417183, 249882401380, 732670159161, 2151506490430
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Examples

			All solutions for n=5:
.-1...-1....0
..0...-1....0
..0....0....0
..1....1....0
..0....1....0
		

Crossrefs

Column 2 of A208970.

Extensions

a(23)-a(32) from Andrew Howroyd, Mar 12 2017

A208965 Number of n-bead necklaces labeled with numbers -3..3 allowing reversal, with sum zero and first and second differences in -3..3.

Original entry on oeis.org

1, 1, 2, 4, 9, 29, 87, 325, 1148, 4168, 15250, 57027, 214739, 820038, 3156251, 12243837, 47772129, 187370511, 738088612, 2919087297, 11585698838, 46133010366, 184243108172, 737834327019, 2962231908667, 11920345964795, 48072060624163, 194251242877839
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Examples

			All solutions for n=5:
..0...-2...-1...-1...-1...-2...-1...-1...-2
..0...-1...-1....0....0...-2...-1....0...-1
..0....1....0...-1....0....1....1....0....2
..0....2....1....1....1....2....0....0....2
..0....0....1....1....0....1....1....1...-1
		

Crossrefs

Column 3 of A208970.

Extensions

a(19)-a(28) from Andrew Howroyd, Mar 12 2017

A208966 Number of n-bead necklaces labeled with numbers -4..4 allowing reversal, with sum zero and first and second differences in -4..4.

Original entry on oeis.org

1, 2, 2, 8, 19, 90, 371, 1755, 8092, 37970, 179133, 857902, 4152036, 20313811, 100217735, 497983883, 2488970462, 12503041095, 63083893996, 319545209584, 1624399382535, 8284482761844, 42377064630483, 217362286106711, 1117715413419540, 5760869940768290
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Examples

			Some solutions for n=5:
.-2...-2...-2...-2...-3...-1...-1...-2...-2...-2...-1...-1....0...-1...-1...-1
..0...-2...-1....0...-2....0...-1...-1...-1...-2...-1...-1....0....0....0...-1
..0....0....1....1....2....0...-1....1....2....1....1....0....0....0....1....0
..2....2....2....1....3....1....1....1....2....2....0....2....0....0...-1....1
..0....2....0....0....0....0....2....1...-1....1....1....0....0....1....1....1
		

Crossrefs

Column 4 of A208970.

Extensions

a(16)-a(26) from Andrew Howroyd, Mar 12 2017

A208971 Number of 4-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first and second differences in -n..n.

Original entry on oeis.org

1, 3, 4, 8, 11, 18, 24, 35, 45, 61, 76, 98, 119, 148, 176, 213, 249, 295, 340, 396, 451, 518, 584, 663, 741, 833, 924, 1030, 1135, 1256, 1376, 1513, 1649, 1803, 1956, 2128, 2299, 2490, 2680, 2891, 3101, 3333, 3564, 3818, 4071, 4348, 4624, 4925, 5225, 5551, 5876
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Row 4 of A208970.

Examples

			All solutions for n=5:
  -2   -1   -2   -2   -1   -1   -1    0   -2   -2   -1
   0   -1    0   -1    0    0    1    0   -1   -2   -1
   2    0    1    1    0    1   -1    0    2    2    1
   0    2    1    2    1    0    1    0    1    2    1
		

Crossrefs

Cf. A208970.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Conjectures from Colin Barker, Jul 07 2018: (Start)
G.f.: x*(1 + x - 3*x^2 + x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = (2*n^3 + 6*n^2 + 28*n + 48) / 48 for n even.
a(n) = (2*n^3 + 6*n^2 + 22*n + 18) / 48 for n odd.
(End)

A208972 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first and second differences in -n..n.

Original entry on oeis.org

1, 3, 9, 19, 40, 77, 130, 213, 325, 484, 687, 956, 1294, 1715, 2233, 2863, 3612, 4508, 5551, 6779, 8186, 9814, 11667, 13773, 16153, 18832, 21824, 25171, 28874, 32991, 37513, 42502, 47963, 53938, 60455, 67549, 75241, 83587, 92589, 102325, 112783
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Row 5 of A208970.

Examples

			Some solutions for n=5:
  -3  -3  -2  -2  -3  -2  -1  -1  -1  -3  -2  -2  -2  -3  -1  -2
  -2  -1  -2  -2  -3  -2  -1   0   0  -1   0  -1   0  -2  -1  -2
   1   1  -2   0   2   1   0   0   1   2  -1   0   0   2   0  -1
   3   3   3   3   2   1   2   1  -1   3   2   2   2   2   0   3
   1   0   3   1   2   2   0   0   1  -1   1   1   0   1   2   2
		

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-8) - a(n-9) + a(n-10) - 2*a(n-11) + 2*a(n-13) - a(n-14) - a(n-15) + 2*a(n-16) - 2*a(n-18) + a(n-19).

A208973 Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first and second differences in -n..n.

Original entry on oeis.org

2, 8, 29, 90, 221, 495, 967, 1801, 3093, 5050, 7921, 11994, 17488, 25008, 34797, 47448, 63641, 83953, 108932, 139984, 177423, 222404, 276434, 340397, 415203, 503475, 605600, 723511, 859793, 1015565, 1192375, 1394565, 1622265, 1878352, 2167156
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Row 6 of A208970.

Examples

			Some solutions for n=5:
  -3  -3  -3  -2  -3  -3  -2  -2  -3  -3  -2  -3  -3  -2  -2  -1
  -3  -3  -1   0  -1  -2  -2  -2  -3  -2  -1  -3  -2  -1  -2  -1
  -2   1   0   2   0   1  -2   0   1  -2   0   1  -1  -1   1   0
   2   1   3   0   2   4   2   1   2   2   1   1   3   2   1   1
   4   2   2  -1   3   2   2   2   2   4   2   3   2   1   1   0
   2   2  -1   1  -1  -2   2   1   1   1   0   1   1   1   1   1
		

Formula

Empirical: a(n) = a(n-1) - a(n-2) + 3*a(n-3) - 2*a(n-4) + 2*a(n-5) - 3*a(n-6) + a(n-7) - a(n-8) + a(n-9) + a(n-10) - a(n-11) + 3*a(n-12) - 5*a(n-13) + 4*a(n-14) - 8*a(n-15) + 7*a(n-16) - 5*a(n-17) + 7*a(n-18) - 3*a(n-19) + 2*a(n-20) - 2*a(n-21) - 2*a(n-22) + 2*a(n-23) - 3*a(n-24) + 7*a(n-25) - 5*a(n-26) + 7*a(n-27) - 8*a(n-28) + 4*a(n-29) - 5*a(n-30) + 3*a(n-31) - a(n-32) + a(n-33) + a(n-34) - a(n-35) + a(n-36) - 3*a(n-37) + 2*a(n-38) - 2*a(n-39) + 3*a(n-40) - a(n-41) + a(n-42) - a(n-43).

A208974 Number of 7-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first and second differences in -n..n.

Original entry on oeis.org

2, 15, 87, 371, 1185, 3186, 7425, 15658, 30368, 55222, 95087, 156612, 248194, 380753, 567639, 825586, 1174510, 1638724, 2246594, 3032025, 4033918, 5298001, 6876080, 8828154, 11221516, 14133153, 17648642, 21864897, 26888831, 32840460, 39851308
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Row 7 of A208970.

Examples

			Some solutions for n=5:
  -5  -4  -3  -3  -1  -4  -3  -1  -4  -3  -3  -4  -4  -3  -2  -1
  -3  -3  -3  -1  -1  -2  -3  -1  -2  -3  -2  -3  -4  -3  -1   0
   0   1   0  -3   0   0   0  -1   3   0   2  -1   0   1  -1   0
   3   2  -1   0  -1   1   0  -1   3   0   2   3   1   1  -1   0
   5   2   3   3   1   4   3  -1   0   2   2   4   3   1   3  -1
   2   2   3   4   1   2   3   2   1   3   0   3   4   2   3   0
  -2   0   1   0   1  -1   0   3  -1   1  -1  -2   0   1  -1   2
		

A208962 Number of n-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first and second differences in -n..n.

Original entry on oeis.org

1, 1, 2, 8, 40, 495, 7425, 140429, 3014206, 73238115, 2000005946
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Diagonal of A208970.

Examples

			Some solutions for n=5:
.-2...-3...-3...-1...-2...-1...-1...-2...-2...-1...-2....0...-2...-2...-3...-3
.-2...-3...-1....0...-1....0...-1...-1....0....0...-1....0....0....0...-2...-3
..1....2....1...-1....2....0....1....2....2...-1....1....0....0....1....3....1
..1....2....3....0....0....0....0....1...-1....1....2....0....1....0....3....3
..2....2....0....2....1....1....1....0....1....1....0....0....1....1...-1....2
		

A208967 Number of n-bead necklaces labeled with numbers -5..5 allowing reversal, with sum zero and first and second differences in -5..5.

Original entry on oeis.org

1, 2, 2, 11, 40, 221, 1185, 6883, 39143, 224991, 1299553, 7598452, 44893012, 267934513
Offset: 1

Views

Author

R. H. Hardin, Mar 03 2012

Keywords

Comments

Column 5 of A208970.

Examples

			Some solutions for n=5:
.-1...-2...-1...-2...-1...-2...-1...-3...-2...-2...-3....0...-2...-2...-2...-3
..0...-1...-1....0...-1...-2...-1...-1....0....0...-2....0...-1...-2...-1...-2
.-1....2....0....2....1...-2....0....2....0....1....1....0...-1....1....1....2
..1....1....2...-1....0....3....0....2....2....1....3....0....2....1....2....2
..1....0....0....1....1....3....2....0....0....0....1....0....2....2....0....1
		
Showing 1-10 of 12 results. Next