A208984 Areas A of the triangles such that A, the sides, the circumradius and the inradius are integers.
24, 96, 120, 168, 216, 240, 336, 384, 432, 480, 600, 624, 672, 720, 768, 840, 864, 960, 1080, 1176, 1320, 1344, 1512, 1536, 1560, 1680, 1728, 1848, 1920, 1944, 2016, 2040, 2160, 2184, 2304, 2376, 2400, 2496, 2520, 2688, 2856, 2880, 2904, 3000, 3024, 3072, 3240
Offset: 1
Keywords
Examples
a(1) = 24 because, for (a,b,c) = (6, 8, 10) => s = (6 + 8 + 10)/2 = 12, and A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24; R = abc/4A = 480/4*24 = 5; r = A/p = 24/12 = 2.
Links
- Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
- Eric W. Weisstein, MathWorld: Circumradius
- Eric W. Weisstein, MathWorld: Inradius
Programs
-
Maple
with(numtheory):T:=array(1..1000):k:=0:nn:=250: for a from 1 to nn do: for b from a to nn do: for c from b to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and irem(a*b*c,4*s) = 0 and irem(s,p)=0 then k:=k+1:T[k]:= s: else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
-
Mathematica
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[a*b*c/(4* Sqrt[area2])] && IntegerQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Comments