A209027 Number of n-bead necklaces labeled with numbers -3..3 allowing reversal, with sum zero and first differences in -3..3.
1, 2, 4, 12, 34, 144, 576, 2613, 11841, 55773, 265095, 1280476, 6238246, 30674021, 151874427, 756842052, 3792315084, 19096602857, 96586072494, 490453174481, 2499410534082, 12778951549191, 65530990963959, 336965088080673, 1737060054201011, 8975377470866966
Offset: 1
Keywords
Examples
Some solutions for n=6: .-2...-3...-3...-3...-2...-1...-1...-3...-3...-3...-2...-1...-3...-1...-1...-1 ..0...-2...-1...-2...-1...-1....1....0....0...-1....0....0...-2...-1...-1...-1 ..0....1....1....1....0....2...-1...-1....0....0....2...-1....1...-1....0....0 ..2....2....2....1....0...-1....1....2....0....2....0....0....3....2....1...-1 ..0....2....1....3....3...-1...-1....2....3....2...-1....0....2...-1....1....2 ..0....0....0....0....0....2....1....0....0....0....1....2...-1....2....0....1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Column 3 of A209032.
Extensions
a(19)-a(26) from Andrew Howroyd, Mar 19 2017