cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A209025 Number of n-bead necklaces labeled with numbers -1..1 allowing reversal, with sum zero and first differences in -1..1.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 13, 21, 45, 83, 181, 362, 794, 1676, 3703, 8049, 17925, 39679, 88980, 199308, 449714, 1015574, 2303940, 5234731, 11931095, 27239911, 62337821, 142894336, 328168558, 754815704, 1738888333, 4011453913, 9266702091, 21433240903, 49633242760
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			All solutions for n=6:
..0...-1...-1...-1
..0....0...-1....0
..0....0....0....0
..0....1....1....0
..0....0....1....1
..0....0....0....0
		

Crossrefs

Column 1 of A209032.

Extensions

a(33)-a(36) from Andrew Howroyd, Mar 19 2017

A209026 Number of n-bead necklaces labeled with numbers -2..2 allowing reversal, with sum zero and first differences in -2..2.

Original entry on oeis.org

1, 2, 2, 6, 11, 33, 86, 278, 873, 2938, 9904, 34321, 119673, 422725, 1502590, 5381671, 19377063, 70138385, 254978018, 930709334, 3409356533, 12530190100, 46188325542, 170723964752, 632624262841, 2349655631568, 8745690221340, 32617408075856
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
..0...-1...-1...-2...-2...-2...-1...-1...-2...-1...-1...-1...-2...-1...-1...-1
..0....0....0....0....0...-1...-1...-1...-1...-1...-1....0...-1...-1....0....0
..0....0....0....1....0....1....0....0....1...-1....1....1....1....0...-1....1
..0....1....0....0....1....0....0....0....2....1....0...-1....1....1....0...-1
..0...-1....0....1....1....2....1....2....1....1....0....0....1....0....2....1
..0....1....1....0....0....0....1....0...-1....1....1....1....0....1....0....0
		

Crossrefs

Column 2 of A209032.

Extensions

a(22)-a(28) from Andrew Howroyd, Mar 19 2017

A209027 Number of n-bead necklaces labeled with numbers -3..3 allowing reversal, with sum zero and first differences in -3..3.

Original entry on oeis.org

1, 2, 4, 12, 34, 144, 576, 2613, 11841, 55773, 265095, 1280476, 6238246, 30674021, 151874427, 756842052, 3792315084, 19096602857, 96586072494, 490453174481, 2499410534082, 12778951549191, 65530990963959, 336965088080673, 1737060054201011, 8975377470866966
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
.-2...-3...-3...-3...-2...-1...-1...-3...-3...-3...-2...-1...-3...-1...-1...-1
..0...-2...-1...-2...-1...-1....1....0....0...-1....0....0...-2...-1...-1...-1
..0....1....1....1....0....2...-1...-1....0....0....2...-1....1...-1....0....0
..2....2....2....1....0...-1....1....2....0....2....0....0....3....2....1...-1
..0....2....1....3....3...-1...-1....2....3....2...-1....0....2...-1....1....2
..0....0....0....0....0....2....1....0....0....0....1....2...-1....2....0....1
		

Crossrefs

Column 3 of A209032.

Extensions

a(19)-a(26) from Andrew Howroyd, Mar 19 2017

A209028 Number of n-bead necklaces labeled with numbers -4..4 allowing reversal, with sum zero and first differences in -4..4.

Original entry on oeis.org

1, 3, 5, 23, 88, 471, 2517, 14611, 86014, 519574, 3177405, 19681214, 123050881, 775868013, 4926859869, 31483531830, 202298489710, 1306289630067, 8472236548514, 55167003603285, 360512087413974, 2363623888860990, 15542899182846478, 102488033365084376
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
.-1...-1...-3...-2...-1...-2...-4...-1...-1...-3...-3...-2...-2...-2...-3...-2
..0...-1...-3....0...-1....1....0...-1....0...-1...-1....0...-1....1...-1....0
.-1...-1...-1...-1...-1....1....2....0...-1....0....2....0...-1...-1....2....3
..1....0....2....2....0...-2....0....0....1....3...-1....0....1....2....0...-1
..0....1....4...-1....3....1....2....0...-1....0....3....2....2...-1....1...-1
..1....2....1....2....0....1....0....2....2....1....0....0....1....1....1....1
		

Crossrefs

Column 4 of A209032.

Extensions

a(17)-a(24) from Andrew Howroyd, Mar 19 2017

A209029 Number of n-bead necklaces labeled with numbers -5..5 allowing reversal, with sum zero and first differences in -5..5.

Original entry on oeis.org

1, 3, 7, 38, 187, 1237, 8235, 58524, 422504, 3117158, 23290361, 176103500, 1344136056, 10344670554, 80181862705, 625395356182, 4904914026691, 38658468142298, 306034794302017, 2432316965565820, 19401236375176220, 155259190622702818
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
.-4...-3...-2...-3...-3...-3...-3...-3...-3...-3...-3...-3...-2...-2...-2...-3
.-1....0...-1....0...-2....1....0...-2....1...-2...-2...-3....0....1....0...-2
..0....1....0....0....1....2....3....2...-3....2....2...-2....1...-1....1....1
..0....0....3....0....4...-2....0...-1....1....2....1....1....2....1....1....1
..4....2...-1....1...-1....0...-2....2....2....3....0....5...-2....0...-2....3
..1....0....1....2....1....2....2....2....2...-2....2....2....1....1....2....0
		

Crossrefs

Column 5 of A209032.

Extensions

a(15)-a(22) from Andrew Howroyd, Mar 12 2017

A209030 Number of n-bead necklaces labeled with numbers -6..6 allowing reversal, with sum zero and first differences in -6..6.

Original entry on oeis.org

1, 4, 10, 60, 358, 2798, 22249, 186765, 1596162, 13907330, 122758794, 1096122478, 9880366438, 89796245827, 821927851286, 7570508171686, 70115797179348, 652594351781036, 6100765243003922, 57259681174637899, 539353919732122101, 5097036850039818860
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
  -3  -6  -4  -4  -2  -3  -3  -3  -4  -6  -3  -3  -2  -4  -5  -5
  -1  -1  -3  -3   0  -2   1   0   1  -4  -2  -1  -1  -3   1  -5
   4  -1   0   2   1   2   3  -2  -3   2   2   4   2   2  -4   0
  -2   3   5   3  -1  -1  -1   1   0   3   2  -1   0   3   2   5
   0   5   4   4   0   1  -2   2   5   5   2  -1   0   0   5   4
   2   0  -2  -2   2   3   2   2   1   0  -1   2   1   2   1   1
		

Crossrefs

Column 6 of A209032.

Extensions

a(14)-a(22) from Andrew Howroyd, Mar 12 2017

A209031 Number of n-bead necklaces labeled with numbers -7..7 allowing reversal, with sum zero and first differences in -7..7.

Original entry on oeis.org

1, 4, 12, 88, 625, 5648, 52208, 505857, 4992048, 50169067, 510807173, 5260218485, 54684221779, 573168585795, 6050541798221, 64271927631233, 686512535921878, 7369066749454264, 79449368494683376, 859987831858141180, 9342319735394175920, 101820772577694786504
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Examples

			Some solutions for n=6:
.-6...-3...-5...-3...-2...-5...-4...-4...-3...-5...-4...-4...-5...-3...-3...-5
.-4...-1...-4...-1...-2...-2....1...-3....0...-3...-1...-1...-5...-1...-2...-2
..1...-2....2....5....0....2....0....1....1....4....2...-1....1...-1....4...-2
..4...-1....1...-2....0...-1....2....4...-2...-1....0....4....5....6....4....5
..6....5....6....0....2....4....0...-1....0....3....1....2....2...-1...-3....3
.-1....2....0....1....2....2....1....3....4....2....2....0....2....0....0....1
		

Crossrefs

Column 7 of A209032.

Extensions

a(14)-a(22) from Andrew Howroyd, Mar 12 2017

A209033 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first differences in -n..n.

Original entry on oeis.org

2, 11, 34, 88, 187, 358, 625, 1023, 1584, 2355, 3374, 4700, 6377, 8476, 11049, 14175, 17916, 22361, 27580, 33672, 40713, 48816, 58063, 68577, 80448, 93809, 108760, 125442, 143963, 164476, 187095, 211985, 239266, 269115, 301660, 337086, 375531
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Comments

Row 5 of A209032.

Examples

			Some solutions for n=6;
  -2 -5 -2 -5 -3 -4 -6 -4 -3 -1 -6 -3 -2 -4 -1 -2
   0 -1  0 -1  0  0 -1 -1  0 -1 -1 -1 -2  0  0 -2
  -1  0 -2  2  0  3  5  3 -3 -1  4  0  3 -1  0 -1
  -1  5  0  4  0  0  2  1  3 -1  4  4 -2  3  0  3
   4  1  4  0  3  1  0  1  3  4 -1  0  3  2  1  2
		

Crossrefs

Cf. A209032.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) - 2*a(n-6) + 2*a(n-7) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 2*a(n-12) + a(n-13).
Empirical g.f.: x*(2 + 7*x + 12*x^2 + 24*x^3 + 29*x^4 + 32*x^5 + 32*x^6 + 23*x^7 + 12*x^8 + 9*x^9 - x^11 + x^12) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jul 07 2018

A209034 Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first differences in -n..n.

Original entry on oeis.org

4, 33, 144, 471, 1237, 2798, 5648, 10483, 18174, 29863, 46918, 71037, 104183, 148732, 207352, 283199, 379766, 501099, 651612, 836369, 1060813, 1331122, 1653894, 2036531, 2486878, 3013693, 3626176, 4334533, 5149447, 6082684, 7146500, 8354355
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Comments

Row 6 of A209032.

Examples

			Some solutions for n=6:
  -4  -2  -4  -5  -4  -3  -1  -2  -3  -2  -3  -4  -4  -6  -3  -3
  -2  -2  -2  -1  -1   1  -1  -1   0  -2  -2  -2  -3   0  -2  -2
   3   0   1   2   2   0   2   0  -1  -1  -2  -1   1  -1   4   1
   1  -2   4   1  -2   0  -1   3   3   1   1   4   5   1   0   4
   0   4  -1   2   4   0  -1  -2   0   1   3   1   0   6  -1   2
   2   2   2   1   1   2   2   2   1   3   3   2   1   0   2  -2
		

Formula

Empirical: a(n) = 2*a(n-2) + 2*a(n-3) - 3*a(n-5) - 3*a(n-6) - 2*a(n-7) + a(n-8) + 4*a(n-9) + 4*a(n-10) + a(n-11) - 2*a(n-12) - 3*a(n-13) - 3*a(n-14) + 2*a(n-16) + 2*a(n-17) - a(n-19).

A209035 Number of 7-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first differences in -n..n.

Original entry on oeis.org

6, 86, 576, 2517, 8235, 22249, 52208, 110285, 214440, 390344, 672932, 1108883, 1758433, 2698447, 4024458, 5854361, 8330650, 11624758, 15939472, 21513945, 28626249, 37599103, 48802532, 62660333, 79652814, 100324030, 125284570
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Comments

Row 7 of A209032.

Examples

			Some solutions for n=6:
  -5  -4  -5  -4  -2  -4  -3  -3  -5  -4  -3  -3  -3  -2  -6  -3
  -2  -3  -4  -1   0   1  -1  -2   0  -2   2   1   2  -1  -5  -2
   0   3  -1   0   1  -1   1   1  -2  -3  -1   1  -2   1  -1   3
   1   3   2   5  -2   2   1   2   3   0  -1  -2   3  -2   1   1
   4   0   4   1   1   1   2   1   0   5  -2  -2  -1  -1   5  -1
   4   2   3  -2   1  -1   1   3   3   4   3   3  -2   5   6   0
  -2  -1   1   1   1   2  -1  -2   1   0   2   2   3   0   0   2
		

Formula

Empirical: a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28).
Showing 1-10 of 11 results. Next