cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209059 Decimal expansion of the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} (x*y*z)^(x*y*z) dx dy dz.

Original entry on oeis.org

8, 3, 4, 9, 3, 0, 1, 1, 0, 6, 3, 6, 2, 2, 3, 5, 9, 3, 5, 1, 0, 3, 3, 8, 6, 9, 0, 7, 7, 8, 2, 2, 1, 6, 6, 0, 2, 8, 6, 6, 0, 3, 2, 2, 5, 0, 1, 2, 2, 4, 4, 3, 5, 5, 1, 3, 7, 4, 7, 8, 3, 9, 9, 2, 0, 8, 3, 5, 7, 6, 6, 5, 2, 3, 9, 4, 5, 6, 4, 1, 1, 2, 1, 2, 8, 1, 9, 4, 4, 8, 6, 3, 2, 4, 5, 6, 8, 9, 2, 7, 0, 0, 6
Offset: 0

Views

Author

Peter Bala, Mar 04 2012

Keywords

Comments

The double integral Integral_{y = 0..1} Integral_{x = 0..1} (x*y)^(x*y) dx dy equals Integral_{x = 0..1} x^x dx, which is listed as A083648.

Examples

			0.83493011063622359351...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; 1/2*NSum[ (-1)^(n+1)*(1/n^n + 1/n^(n+1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 100] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013, from formula *)

Formula

The triple integral is most conveniently estimated from the identity Integral_{z = 0..1} Integral_{y = 0..1} Integral_{z = 0..1} (x*y*z)^(x*y*z) dx dy dz = (1/2)*Sum_{n >= 1} (-1)^(n+1)*(1/n^n + 1/n^(n+1)).