A209079 Integer part of sigma(m)*phi(m)/m for colossally abundant numbers m.
1, 4, 9, 44, 96, 312, 2139, 4421, 48234, 623336, 1266781, 3897787, 20138571, 341171088, 6464294306, 148397712765, 299150944780, 8665061848812, 268337399189042, 1911903969221925, 5783509506896323, 213833540687410017
Offset: 1
Keywords
Examples
1 = [3*1/2] 4 = [12*2/6] 9 = [28*4/12] 44 = [168*16/60] 96 = [360*32/120] 312 = [1170*96/360] 2139 = [9360*576/2520] 4421 = [19344*1152/5040] 48234 = [232128*11520/55440] 623336 = [3249792*138240/720720] 1266781 = [6604416*276480/1441440] 3897787 = [20321280*829440/4324320] 20138571 = [104993280*4147200/21621600] 341171088 = [1889879040*66355200/367567200] 6464294306 = [37797580800*1194393600/6983776800] 148397712765 = [907141939200*26276659200/160626866400] 299150944780 = [1828682956800*52553318400/321253732800] 8665061848812 = [54860488704000*1471492915200/9316358251200] 268337399189042 = [1755535638528000*44144787456000/288807105787200] 1911903969221925 = [12508191424512000*309013512192000/2021649740510400] 5783509506896323 = [37837279059148800*927040536576000/6064949221531200]
References
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th edition, Oxford University Press (2008), 350-353.
- G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. 63 (1984), 187-213.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..382
- L. Alaoglu and P. Erdos, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata
- Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), p. 251-256.
- J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17, no.3 (1983), 375-388.
- S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
Comments