A209130 Triangle of coefficients of polynomials v(n,x) jointly generated with A102756; see the Formula section.
1, 1, 2, 1, 5, 3, 1, 9, 12, 5, 1, 14, 31, 27, 8, 1, 20, 65, 89, 55, 13, 1, 27, 120, 230, 222, 108, 21, 1, 35, 203, 511, 684, 514, 205, 34, 1, 44, 322, 1022, 1777, 1834, 1125, 381, 55, 1, 54, 486, 1890, 4095, 5442, 4563, 2367, 696, 89, 1, 65, 705, 3288, 8625
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 5, 3; 1, 9, 12, 5; 1, 14, 31, 27, 8; First three polynomials v(n,x): 1 1 + 2x 1 + 5x + 3x^2. From _Philippe Deléham_, Mar 08 2012: (Start) (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0...) begins: 1; 1, 0; 1, 2, 0; 1, 5, 3, 0; 1, 9, 12, 5, 0; 1, 14, 31, 27, 8, 0; 1, 20, 65, 89, 55, 13, 0; ... with row sums 1, 1, 3, 9, 27, 81, 243, 729, ... (powers of 3). (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A102756 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209130 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-x-y*x+y*x^2-y^2*x^2)/(1-(2+y)*x-(y^2-1)*x^2).
Comments