A209138 Triangle of coefficients of polynomials v(n,x) jointly generated with A209137; see the Formula section.
1, 1, 2, 2, 4, 3, 3, 9, 10, 5, 5, 18, 28, 22, 8, 8, 35, 68, 74, 45, 13, 13, 66, 154, 210, 177, 88, 21, 21, 122, 331, 541, 574, 397, 167, 34, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55, 55, 399, 1382, 2982, 4404, 4614, 3434, 1758, 566, 89, 89, 710, 2723
Offset: 1
Examples
First five rows: 1; 1, 2; 2, 4, 3; 3, 9, 10, 5; 5, 18, 28, 22, 8; First three polynomials v(n,x): 1, 1 + 2x, 2 + 4x + 3x^2. From _Philippe Deléham_, Apr 11 2012: (Start) Triangle in A185081 begins: 1; 0, 1; 0, 1, 2; 0, 2, 4, 3; 0, 3, 9, 10, 5; 0, 5, 18, 28, 22, 8; ... (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209137 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209138 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 11 2012: (Start)
T(n,k) = A185081(n,k+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k >= n. (End)
Comments