cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209138 Triangle of coefficients of polynomials v(n,x) jointly generated with A209137; see the Formula section.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 3, 9, 10, 5, 5, 18, 28, 22, 8, 8, 35, 68, 74, 45, 13, 13, 66, 154, 210, 177, 88, 21, 21, 122, 331, 541, 574, 397, 167, 34, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55, 55, 399, 1382, 2982, 4404, 4614, 3434, 1758, 566, 89, 89, 710, 2723
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2012

Keywords

Comments

Every row begins and ends with a Fibonacci number (A000045).
u(n,1) = n-th row sum = 3^(n-1).
Alternating row sums: 1,-1,1,-1,1,-1,1,-1,1,-1,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
  1;
  1,  2;
  2,  4,  3;
  3,  9, 10,  5;
  5, 18, 28, 22,  8;
First three polynomials v(n,x): 1, 1 + 2x, 2 + 4x + 3x^2.
From _Philippe Deléham_, Apr 11 2012: (Start)
Triangle in A185081 begins:
  1;
  0,  1;
  0,  1,  2;
  0,  2,  4,  3;
  0,  3,  9, 10,  5;
  0,  5, 18, 28, 22,  8;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209137 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209138 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 11 2012: (Start)
T(n,k) = A185081(n,k+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k >= n. (End)