A209196 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, n*k) * y^k ), as read by rows.
1, 1, 1, 1, 4, 1, 1, 32, 32, 1, 1, 487, 3282, 487, 1, 1, 11113, 657573, 657573, 11113, 1, 1, 335745, 209282906, 1513844855, 209282906, 335745, 1, 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1, 1, 565877928, 61162554558200
Offset: 0
Examples
This triangle begins: 1; 1, 1; 1, 4, 1; 1, 32, 32, 1; 1, 487, 3282, 487, 1; 1, 11113, 657573, 657573, 11113, 1; 1, 335745, 209282906, 1513844855, 209282906, 335745, 1; 1, 12607257, 96673776804, 5580284351032, 5580284351032, 96673776804, 12607257, 1; 1, 565877928, 61162554558200, 31336815578461815, 229089181252258800, 31336815578461815, 61162554558200, 565877928, 1; ... G.f.: A(x,y) = 1 + (1+y)*x + (1+4*y+y^2)*x^2 + (1+32*y+32*y^2+y^3)*x^3 + (1+487*y+3282*y^2+487*y^3+y^4)*x^4 +... The logarithm of the g.f. equals the series: log(A(x,y)) = (1 + y)*x + (1 + 6*y + y^2)*x^2/2 + (1 + 84*y + 84*y^2 + y^3)*x^3/3 + (1 + 1820*y + 12870*y^2 + 1820*y^3 + y^4)*x^4/4 + (1 + 53130*y + 3268760*y^2 + 3268760*y^3 + 53130*y^4 + y^5)*x^5/5 +... in which the coefficients form A209330(n,k) = binomial(n^2, n*k).
Links
- Paul D. Hanna, Rows n = 0..30, flattened.
Programs
-
PARI
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(j=0,m,binomial(m^2,m*j)*y^j))+x*O(x^n)),n,x),k,y)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))