A209203 Values of the difference d for 4 primes in geometric-arithmetic progression with the minimal sequence {5*5^j + j*d}, j = 0 to 3.
6, 12, 16, 28, 34, 36, 54, 76, 78, 84, 114, 124, 132, 138, 142, 148, 154, 166, 168, 208, 226, 258, 268, 288, 324, 348, 376, 414, 436, 442, 454, 462, 496, 538, 552, 562, 582, 588, 684, 714, 736, 744, 798, 804, 814, 832, 882, 894, 912, 946, 972, 994, 1006
Offset: 1
Keywords
Examples
d = 12 then {5*5^j + j*d}, j = 0 to 3, is {5, 37, 149, 661}, which is 4 primes in geometric-arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv:1203.2083v1 [math.NT], (Mar 09 2012).
Programs
-
Mathematica
p = 5; gapset4d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d}] == {True, True, True, True}, AppendTo[gapset4d, d]], {d, 0, 1000, 2}]; gapset4d Select[Range[2,1100,2],And@@PrimeQ[{#+25,2#+125,3#+625}]&] (* Harvey P. Dale, Jan 06 2013 *)
-
PARI
forstep(n=2,1e3,[2,2,2,4],if(isprime(n+25)&&isprime(2*n+125)&&isprime(3*n+625),print1(n", "))) \\ Charles R Greathouse IV, Mar 12 2012
Comments