cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209203 Values of the difference d for 4 primes in geometric-arithmetic progression with the minimal sequence {5*5^j + j*d}, j = 0 to 3.

Original entry on oeis.org

6, 12, 16, 28, 34, 36, 54, 76, 78, 84, 114, 124, 132, 138, 142, 148, 154, 166, 168, 208, 226, 258, 268, 288, 324, 348, 376, 414, 436, 442, 454, 462, 496, 538, 552, 562, 582, 588, 684, 714, 736, 744, 798, 804, 814, 832, 882, 894, 912, 946, 972, 994, 1006
Offset: 1

Views

Author

Sameen Ahmed Khan, Mar 06 2012

Keywords

Comments

Numbers n such that n+25, 2n+125, and 3n+625 are prime.
A geometric-arithmetic progression of primes is a set of k primes (denoted by GAP-k) of the form p r^j + j d for fixed p, r and d and consecutive j. Symbolically, for r = 1, this sequence simplifies to the familiar primes in arithmetic progression (denoted by AP-k). The computations were done without any assumptions on the form of d. Primality requires d to be even and coprime to 5.
This sequence is infinite on Dickson's conjecture. [Charles R Greathouse IV, Mar 12 2012]

Examples

			d = 12  then {5*5^j + j*d}, j = 0 to 3, is {5, 37, 149, 661}, which is 4 primes in geometric-arithmetic progression.
		

Crossrefs

Programs

  • Mathematica
    p = 5; gapset4d = {}; Do[If[PrimeQ[{p, p*p + d, p*p^2 + 2*d, p*p^3 + 3*d}] == {True, True, True, True}, AppendTo[gapset4d, d]], {d, 0, 1000, 2}]; gapset4d
    Select[Range[2,1100,2],And@@PrimeQ[{#+25,2#+125,3#+625}]&] (* Harvey P. Dale, Jan 06 2013 *)
  • PARI
    forstep(n=2,1e3,[2,2,2,4],if(isprime(n+25)&&isprime(2*n+125)&&isprime(3*n+625),print1(n", "))) \\ Charles R Greathouse IV, Mar 12 2012