A209232 a(n) is 2^n times the expected value of the shortest run of 0's in a binary word of length n.
0, 1, 4, 11, 25, 52, 103, 199, 380, 724, 1382, 2649, 5103, 9881, 19224, 37559, 73646, 144848, 285623, 564429, 1117396, 2215436, 4398054, 8740266, 17385207, 34607218, 68934319, 137386725, 273942683, 546450648, 1090419638
Offset: 0
Keywords
Examples
a(3) = 11. To the length 3 binary words {0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1} we have respectively shortest zero runs of length 3 + 2 + 1 + 1 + 2 + 1 + 1 + 0 = 11.
References
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A119706.
Programs
-
Mathematica
nn = 30; Apply[Plus, Table[a = x^n/(1 - x); CoefficientList[Series[(a + 1)/((1 - a x/(1 - x)))*1/(1 - x) - 1/(1 - x), {x, 0, nn}], x], {n, 1, nn}]]
Formula
O.g.f.: Sum_{k >= 1} (x^k/(1 - x) + 1) / ((1 - x^(k + 1)/(1 - x)^2)) * 1/(1 - x) - 1/(1 - x).
Comments