A209240 Triangular array read by rows. T(n,k) is the number of ternary length-n words in which the longest run of consecutive 0's is exactly k; n>=0, 0<=k<=n.
1, 2, 1, 4, 4, 1, 8, 14, 4, 1, 16, 44, 16, 4, 1, 32, 132, 58, 16, 4, 1, 64, 384, 200, 60, 16, 4, 1, 128, 1096, 668, 214, 60, 16, 4, 1, 256, 3088, 2180, 740, 216, 60, 16, 4, 1, 512, 8624, 6992, 2504, 754, 216, 60, 16, 4, 1, 1024, 23936, 22128, 8332, 2576, 756, 216, 60, 16, 4, 1
Offset: 0
Examples
1; 2, 1; 4, 4, 1; 8, 14, 4, 1; 16, 44, 16, 4, 1; 32, 132, 58, 16, 4, 1; 64, 384, 200, 60, 16, 4, 1; 128, 1096, 668, 214, 60, 16, 4, 1; 256, 3088, 2180, 740, 216, 60, 16, 4, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Cf. A048004.
Programs
-
Mathematica
nn=10;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[CoefficientList[ Series[(1-x^k)/(1-3x+2x^(k+1))-(1-x^(k-1))/(1-3x+2x^k),{x,0,nn}],x],{k,1,nn+1}]]]//Grid
Formula
O.g.f. for column k: (1-x)^2*x^k/(1-3*x+2*x^(k+1))/(1-3*x+2*x^(k+2)).
Comments