cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210472 Number A(n,k) of paths starting at {n}^k to a border position where one component equals 0 using steps that decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 33, 20, 1, 0, 1, 5, 196, 543, 70, 1, 0, 1, 6, 1305, 22096, 10497, 252, 1, 0, 1, 7, 9786, 1304045, 3323092, 220503, 924, 1, 0, 1, 8, 82201, 106478916, 1971644785, 574346824, 4870401, 3432, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2013

Keywords

Examples

			A(0,3) = 1: [(0,0,0)].
A(1,1) = 1: [(1), (0)].
A(1,2) = 2: [(1,1), (0,1)], [(1,1), (1,0)].
A(1,3) = 3: [(1,1,1), (0,1,1)], [(1,1,1), (1,0,1)], [(1,1,1), (1,1,0)].
A(2,1) = 1: [(2), (1), (0)].
A(2,2) = 6: [(2,2), (1,2), (0,2)], [(2,2), (1,2), (1,1), (0,1)], [(2,2), (1,2), (1,1), (1,0)], [(2,2), (2,1), (1,1), (0,1)], [(2,2), (2,1), (1,1), (1,0)], [(2,2), (2,1), (2,0)].
Square array A(n,k) begins:
  0, 1,   1,      1,         1,             1, ...
  0, 1,   2,      3,         4,             5, ...
  0, 1,   6,     33,       196,          1305, ...
  0, 1,  20,    543,     22096,       1304045, ...
  0, 1,  70,  10497,   3323092,    1971644785, ...
  0, 1, 252, 220503, 574346824, 3617739047205, ...
		

Crossrefs

Columns k=0-4 give: A000004, A000012, A000984, A209245, A209288.
Rows n=0-3 give: A057427, A001477, A093964, A210486.
Main diagonal gives A276490.
Cf. A089759 (unrestricted paths), A225094, A262809, A263159.

Programs

  • Maple
    b:= proc() option remember; `if`(nargs=0, 0, `if`(args[1]=0, 1,
          add(b(sort(subsop(i=args[i]-1, [args]))[]), i=1..nargs)))
        end:
    A:= (n, k)-> b(n$k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[] = 0; b[args__] := b[args] = If[First[{args}] == 0, 1, Sum[b @@ Sort[ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]]; a[n_, k_] := b @@ Array[n&, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

A209288 Main diagonal of the quadruple recurrence x(i,j,k,m) = x(i-1,j,k,m) + x(i,j-1,k,m) + x(i,j,k-1,m) + x(i,j,k,m-1) with x(i,j,k,m) = 1 if 0 in {i,j,k,m}.

Original entry on oeis.org

1, 4, 196, 22096, 3323092, 574346824, 107697153304, 21304602938056, 4376897152490644, 924871720044550888, 199731547307306769736, 43887077830441507774336, 9780481173520567895278600, 2205358814500087896152369104, 502225405515985555630557626848
Offset: 0

Views

Author

Jon Perry, Jan 16 2013

Keywords

Crossrefs

Cf. A209245.
Column k=4 of A210472. - Alois P. Heinz, Jan 23 2013

Programs

  • Maple
    b:= proc() option remember; `if`(args[1]=0, 1,
           add(b(sort(subsop(i=args[i]-1, [args]))[]), i=1..nargs))
        end:
    a:= n-> b(n$4):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 18 2013
  • Mathematica
    b[] = 0; b[args__] := b[args] = If[{args}[[1]] == 0, 1, Sum[b @@ Sort[ ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]];
    a[n_] := b @@ Table[n, 4];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 03 2018, after Alois P. Heinz *)

Formula

a(n) = x(n,n,n,n) with x(i,j,k,m) = 1 if 0 in {i,j,k,m} and x(i,j,k,m) = x(i-1,j,k,m) + x(i,j-1,k,m) + x(i,j,k-1,m) + x(i,j,k,m-1) else.
a(n) ~ 2^(8*n-1/2) / (27*(Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 07 2014
Recurrence: 2*(n-2)*(n-1)^3*(3*n - 4)*(3*n - 2)*(10773*n^5 - 127620*n^4 + 601635*n^3 - 1410376*n^2 + 1643420*n - 761136)*a(n) = (n-2)*(50320683*n^10 - 922567239*n^9 + 7517570148*n^8 - 35838081882*n^7 + 110640905811*n^6 - 231017836827*n^5 + 330199460678*n^4 - 318795408964*n^3 + 198794448664*n^2 - 72220580288*n + 11590694016)*a(n-1) - 2*(2*n - 3)*(43339779*n^10 - 841711662*n^9 + 7268645808*n^8 - 36726190830*n^7 + 120139923393*n^6 - 265623988980*n^5 + 401575152460*n^4 - 409434087632*n^3 + 269059885664*n^2 - 102737317696*n + 17273392896)*a(n-2) - 16*(2*n - 5)*(2*n - 3)*(3*n - 8)*(3*n - 7)*(4*n - 11)*(4*n - 9)*(10773*n^5 - 73755*n^4 + 198885*n^3 - 263461*n^2 + 170958*n - 43304)*a(n-3). - Vaclav Kotesovec, Sep 12 2016
Showing 1-2 of 2 results.