A209260 Irregular triangular array read by rows, resulting in a permutation of the natural numbers.
1, 2, 3, 5, 6, 4, 7, 9, 10, 12, 14, 15, 11, 18, 20, 21, 13, 22, 25, 27, 28, 8, 26, 30, 33, 35, 36, 17, 24, 39, 42, 44, 45, 19, 34, 40, 49, 52, 54, 55, 38, 51, 56, 60, 63, 65, 66, 23, 50, 57, 68, 72, 75, 77, 78
Offset: 1
Examples
As an irregular triangle: {1}; {2, 3}; {5, 6}; {4, 7, 9, 10}; {12, 14, 15}; {11, 18, 20, 21}; {13, 22, 25, 27, 28}; {8, 26, 30, 33, 35, 36}; {17, 24, 39, 42, 44, 45}; {19, 34, 40, 49, 52, 54, 55}; {38, 51, 56, 60, 63, 65, 66}; {23, 50, 57, 68, 72, 75, 77, 78}; and as the terms appear in their correct positions in A141419: {1 }; {2, 3 }; { 5, 6 }; {4, 7, 9, 10 }; { 12, 14, 15 }; { 11, 18, 20, 21 }; { 13, 22, 25, 27, 28 }; {8, 26, 30, 33, 35, 36 }; { 17, 24, 39, 42, 44, 45 }; { 19, 34, 40, 49, 52, 54, 55 }; { 38, 51, 56, 60, 63, 65, 66 }; { 23, 50, 57, 68, 72, 75, 77, 78}; The row-column index pair for a hole in the triangle can be computed from the expressions in the Formula section and the triangle produced with the Mathematica code. - _Hartmut F. W. Hoft_, Apr 14 2016
Links
- Hartmut F. W. Hoft, Table of n, a(n) for n = 1..2597, the first 100 rows of the triangle by rows
- Hartmut F. W. Hoft, Proof of Conjecture 2
- L. E. Jeffery, Proof of Conjecture 1 in A209260.
Crossrefs
Cf. A141419.
Programs
-
Mathematica
oddDivs[v_] := Module[{d=Divisors[v]}, Select[Transpose[{d, Reverse[d]}], OddQ[#[[2]]]&]] holes[v_] := Drop[Sort[Map[{#[[1]]+(#[[2]]-1)/2, If[#[[2]]+1<=2*#[[1]], #[[2]], 2*#[[1]]]}&, oddDivs[v]], #1[[1]]<#2[[1]]&], 1] a141419[i_, j_] := j*(2*i-j+1)/2 triangle141419[r_] := Table[a141419[i, j], {i, 1, r}, {j, 1, i}] holes209260[r_] := Select[Flatten[Map[holes, Union[Flatten[triangle141419[r]]]], 1], #[[1]]<=r&] triangle209260[r_] := Module[{rT=triangle141419[r], rH=holes209260[r], k, i, j}, For[k=1, k<=Length[rH], k++, {i, j}=rH[[k]]; rT[[i, j]]=" "]; rT] a209260[r_] := Select[Flatten[triangle209260[r]], #!=" "&] a209260[12] (* data *) TableForm[triangle209260[12], TableDepth->2] (* triangle with holes *) (* Hartmut F. W. Hoft, Apr 14 2016 *)
-
PARI
try(p)={ \\ Test conjecture at prime p my(n=p\2); my(v=vectorsmall(n,i,i),v1=vectorsmall(n-1,i,2*i+1)); while(1, my(t=#v1-1); while(t && v1[t]>p, t--); if(t<1,return(0)); [v1,v]=[vectorsmall(t,i,v1[i]+v1[i+1]-v[i+1]),v1]; for(i=1,#v1, if(v1[i]==p && isprime(p),return("Conjecture fails at "p)) ) ) }; \\ Charles R Greathouse IV, Jan 23 2013
Comments