A209268 Inverse permutation A054582.
1, 2, 3, 4, 6, 5, 10, 7, 15, 9, 21, 8, 28, 14, 36, 11, 45, 20, 55, 13, 66, 27, 78, 12, 91, 35, 105, 19, 120, 44, 136, 16, 153, 54, 171, 26, 190, 65, 210, 18, 231, 77, 253, 34, 276, 90, 300, 17, 325, 104, 351, 43, 378, 119, 406, 25, 435, 135, 465, 53, 496, 152
Offset: 1
Keywords
Examples
The start of the sequence for n = 1..32 as table, distributed by exponent of highest power of 2 dividing n: | Exponent of highest power of 2 dividing n n |-------------------------------------------------- | 0 1 2 3 4 5 ... ------------------------------------------------------ 1 |....1 2 |...........2 3 |....3 4 |..................4 5 |....6 6 |...........5 7 |...10 8 |..........................7 9 |...15 10 |...........9 11 |...21 12 |..................8 13 |...28 14 |..........14 15 |...36 16 |................................11 17 |...45 18 |..........20 19 |...55 20 |.................13 21 |...66 22 |..........27 23 |...78 24 |................................12 25 |...91 26 |..........35 27 |..105 28 |.................19 29 |..120 30 |..........44 31 |..136 32 |.........................................16 . . . Let r_c be number row inside the column number c. r_c = (n+2^c)/2^(c+1). The column number 0 contains numbers r_0*(r_0+1)/2, A000217, The column number 1 contains numbers r_1*(r_1+3)/2, A000096, The column number 2 contains numbers r_2*(r_2+5)/2 + 1, A034856, The column number 3 contains numbers r_3*(r_3+7)/2 + 3, A055998, The column number 4 contains numbers r_4*(r_4+9)/2 + 6, A046691.
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..10000
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- R. J. Mathar, oeisPy
- Eric W. Weisstein, MathWorld: Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
a[n_] := (v = IntegerExponent[n, 2]; (1/2)*(((1/2)*(n/2^v + 1) + v)^2 + (1/2)*(n/2^v + 1) - v)); Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jan 15 2013, from 1st formula *)
-
Python
f = open("result.csv", "w") def A007814(n): ### author Richard J. Mathar 2010-09-06 (Start) ### http://oeis.org/wiki/User:R._J._Mathar/oeisPy/oeisPy/oeis_bulk.py a = 0 nshft = n while (nshft %2 == 0): a += 1 nshft >>= 1 return a ###(End) for n in range(1,10001): x = A007814(n) y = (n+2**x)/2**(x+1) m = ((x+y)**2-x+y)/2 f.write('%d;%d;%d;%d;\n' % (n, x, y, m)) f.close()
Comments