cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209278 Second inverse function (numbers of rows) for pairing function A185180.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 4, 1, 3, 4, 2, 5, 1, 4, 3, 5, 2, 6, 1, 4, 5, 3, 6, 2, 7, 1, 5, 4, 6, 3, 7, 2, 8, 1, 5, 6, 4, 7, 3, 8, 2, 9, 1, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Examples

			The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
1...2...2...3...3...4...4...5...
1...3...2...4...3...5...4...6...
1...4...2...5...3...6...4...7...
1...5...2...6...3...7...4...8...
1...6...2...7...3...8...4...9...
1...7...2...8...3...9...4..10...
1...8...2...9...3..10...4..11...
. . .
The start of the sequence as triangle array read by rows:
1;
2, 1;
2, 3, 1;
3, 2, 4, 1;
3, 4, 2, 5, 1;
4, 3, 5, 2, 6, 1;
4, 5, 3, 6, 2, 7, 1;
5, 4, 6, 3, 7, 2, 8, 1;
. . .
Row number r contains permutation numbers form 1 to r.
If r is odd (r+1)/2, (r+1)/2 +1, (r+1)/2 -1, ... 2, r, 1.
If r is even r/2 + 1, r/2, r/2 + 2, ...  2, r, 1.
		

Crossrefs

Programs

  • Mathematica
    T[r_, s_] := If[OddQ[s], (s+1)/2, r + s/2];
    Table[T[r-s+1, s], {r, 1, 11}, {s, r, 1, -1}] // Flatten (* Jean-François Alcover, Nov 19 2019 *)
  • PARI
    T(r,s)=s\2+if(bittest(s,0),1,r) \\ - M. F. Hasler, Jan 15 2013
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    result=int((t+3)/2)+int(i/2)*(-1)**(i+t)
    

Formula

a(n) = floor((A003056(n)+3)/2) + floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)).
a(n)= floor((t+3)/2)+ floor(i/2)*(-1)^(i+t),
where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2.
T(r,2s-1)=s, T(r,2s)= r+s. (When read as square array by antidiagonals.)