cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209279 First inverse function (numbers of rows) for pairing function A185180.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 2, 3, 1, 4, 3, 2, 4, 1, 5, 3, 4, 2, 5, 1, 6, 4, 3, 5, 2, 6, 1, 7, 4, 5, 3, 6, 2, 7, 1, 8, 5, 4, 6, 3, 7, 2, 8, 1, 9, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1, 12, 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1, 13
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Comments

The triangle equals A158946 with the first column removed. - Georg Fischer, Jul 26 2023

Examples

			The start of the sequence as table T(r,s) r,s >0 read by antidiagonals:
  1...1...2...2...3...3...4...4...
  2...1...3...2...4...3...5...4...
  3...1...4...2...5...3...6...4...
  4...1...5...2...6...3...7...4...
  5...1...6...2...7...3...8...4...
  6...1...7...2...8...3...9...4...
  7...1...8...2...9...3..10...4...
  ...
The start of the sequence as triangle array read by rows:
  1;
  1, 2;
  2, 1, 3;
  2, 3, 1, 4;
  3, 2, 4, 1, 5;
  3, 4, 2, 5, 1, 6;
  4, 3, 5, 2, 6, 1, 7;
  4, 5, 3, 6, 2, 7, 1, 8;
  ...
Row number r contains permutation numbers form 1 to r.
If r is odd (r+1)/2, (r+1)/2-1, (r+1)/2+1,...r-1, 1, r.
If r is even r/2, r/2+1, r/2-1, ... r-1, 1, r.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Abs[(2*k - 1 + (-1)^(n - k)*(2*n + 1))/4];
    Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    T(n, k)=abs((2*k-1+(-1)^(n-k)*(2*n+1))/4) \\ Andrew Howroyd, Dec 31 2017
    
  • Python
    # Edited by M. F. Hasler, May 30 2020
    def a(n):
       t = int((math.sqrt(8*n-7) - 1)/2);
       i = n-t*(t+1)/2;
       return int(t/2)+1+int(i/2)*(-1)**(i+t+1)

Formula

a(n) = floor((A003056(n)+2)/2)+ floor(A002260(n)/2)*(-1)^(A002260(n)+A003056(n)+1).
a(n) = |A128180(n)|.
a(n) = floor((t+2)/2) + floor(i/2)*(-1)^(i+t+1), where t=floor((-1+sqrt(8*n-7))/2), i=n-t*(t+1)/2.
T(r,2s)=s, T(r,2s-1)= r+s-1.(When read as table T(r,s) by antidiagonals.)
T(n,k) = ceiling((n + (-1)^(n-k)*k)/2) = (n+k)/2 if n-k even, otherwise (n-k+1)/2. - M. F. Hasler, May 30 2020

Extensions

Data corrected by Andrew Howroyd, Dec 31 2017