A209302 Table T(n,k) = max{n+k-1, n+k-1} n, k > 0, read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1).
1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 16, 15, 14
Offset: 1
Examples
The start of the sequence as a table for the general case: 1 m+1 2*m+1 3*m+1 4*m+1 5*m+1 6*m+1 ... m+1 m+2 2*m+2 3*m+2 4*m+2 5*m+2 6*m+2 ... 2*m+1 2*m+2 2*m+3 3*m+3 4*m+3 5*m+3 6*m+3 ... 3*m+1 3*m+2 3*m+3 3*m+4 4*m+4 5*m+4 6*m+4 ... 4*m+1 4*m+2 4*m+3 4*m+4 4*m+5 5*m+5 6*m+5 ... 5*m+1 5*m+2 5*m+3 5*m+4 5*m+5 5*m+6 6*m+6 ... 6*m+1 6*m+2 6*m+3 6*m+4 6*m+5 6*m+6 6*m+7 ... ... The start of the sequence as a triangular array read by rows for general case: 1; m+1, m+2, m+1; 2*m+1, 2*m+2, 2*m+3, 2*m+2, 2*m+1; 3*m+1, 3*m+2, 3*m+3, 3*m+4, 3*m+3, 3*m+2, 3*m+1; 4*m+1, 4*m+2, 4*m+3, 4*m+4, 4*m+5, 4*m+4, 4*m+3, 4*m+2, 4*m+1; ... Row r contains 2*r-1 terms: r*m+1, r*m+2, ... r*m+r, r*m+r+1, r*m+r, ..., r*m+2, r*m+1. The start of the sequence as triangle array read by rows for m=1: 1; 2, 3, 2; 3, 4, 5, 4, 3; 4, 5, 6, 7, 6, 5, 4; 5, 6, 7, 8, 9, 8, 7, 6, 5; 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6; 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7; ...
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Cf. A187760.
Programs
-
Python
result = 2*int(math.sqrt(n-1)) - abs(n-int(math.sqrt(n-1))**2 - int(math.sqrt(n-1)) -1) +1
-
Python
from math import isqrt def A209302(n): return (k:=(m:=isqrt(n))+(n-m*(m+1)>=1))+abs(k**2-n) # Chai Wah Wu, Jun 08 2025
Formula
In general, let m be a natural number. Table T(n,k) = max{m*n+k-m, n+m*k-m}. For the general case,
a(n) = (m+1)*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
For m=1,
a(n) = 2*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
a(n) = t + |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 07 2019