cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209302 Table T(n,k) = max{n+k-1, n+k-1} n, k > 0, read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1).

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 12, 11, 10, 9, 8, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 16, 15, 14
Offset: 1

Views

Author

Boris Putievskiy, Jan 18 2013

Keywords

Examples

			The start of the sequence as a table for the general case:
      1   m+1 2*m+1 3*m+1 4*m+1 5*m+1 6*m+1 ...
    m+1   m+2 2*m+2 3*m+2 4*m+2 5*m+2 6*m+2 ...
  2*m+1 2*m+2 2*m+3 3*m+3 4*m+3 5*m+3 6*m+3 ...
  3*m+1 3*m+2 3*m+3 3*m+4 4*m+4 5*m+4 6*m+4 ...
  4*m+1 4*m+2 4*m+3 4*m+4 4*m+5 5*m+5 6*m+5 ...
  5*m+1 5*m+2 5*m+3 5*m+4 5*m+5 5*m+6 6*m+6 ...
  6*m+1 6*m+2 6*m+3 6*m+4 6*m+5 6*m+6 6*m+7 ...
  ...
The start of the sequence as a triangular array read by rows for general case:
      1;
    m+1,   m+2,   m+1;
  2*m+1, 2*m+2, 2*m+3, 2*m+2, 2*m+1;
  3*m+1, 3*m+2, 3*m+3, 3*m+4, 3*m+3, 3*m+2, 3*m+1;
  4*m+1, 4*m+2, 4*m+3, 4*m+4, 4*m+5, 4*m+4, 4*m+3, 4*m+2, 4*m+1;
  ...
Row r contains 2*r-1 terms: r*m+1, r*m+2, ... r*m+r, r*m+r+1, r*m+r, ..., r*m+2, r*m+1.
The start of the sequence as triangle array read by rows for m=1:
  1;
  2,  3,  2;
  3,  4,  5,  4,  3;
  4,  5,  6,  7,  6,  5,  4;
  5,  6,  7,  8,  9,  8,  7,  6,  5;
  6,  7,  8,  9, 10, 11, 10,  9,  8,  7,  6;
  7,  8,  9, 10, 11, 12, 13, 12, 11, 10,  9,  8,  7;
  ...
		

Crossrefs

Cf. A187760.

Programs

  • Python
    result = 2*int(math.sqrt(n-1)) - abs(n-int(math.sqrt(n-1))**2 - int(math.sqrt(n-1)) -1) +1
    
  • Python
    from math import isqrt
    def A209302(n): return (k:=(m:=isqrt(n))+(n-m*(m+1)>=1))+abs(k**2-n) # Chai Wah Wu, Jun 08 2025

Formula

In general, let m be a natural number. Table T(n,k) = max{m*n+k-m, n+m*k-m}. For the general case,
a(n) = (m+1)*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
For m=1,
a(n) = 2*sqrt(n-1) + 1 - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1))|.
a(n) = t + |t^2 - n|, where t = floor(sqrt(n)+1/2). - Ridouane Oudra, May 07 2019