cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209306 Binomial self-convolution of sequence k -> A209305(k+1).

Original entry on oeis.org

1, 6, 52, 608, 9000, 161320, 3395384, 82067848, 2239857464, 68123898696, 2284557569272, 83741888125064, 3330861429420984, 142875672420718024, 6574169480181294200, 322998830024467434760, 16876498518902786900792, 934400728689236533139016
Offset: 0

Views

Author

Emanuele Munarini, Jan 18 2013

Keywords

Crossrefs

Cf. A209305.

Programs

  • Mathematica
    (* Generating series *)
      A[x_] := InverseErf[(2 Exp[x] - 2 + Exp[1] Sqrt[Pi] Erf[1])/(Exp[1] Sqrt[Pi])];
    CoefficientList[Series[A'[x]^2, {x, 0, 20}], x] Table[n!, {n, 0, 20}]
    (* Recurrences *)
    a[n_] := a[n] = a[n-1]+2Sum[Binomial[n-2,k]a[k]b[n-2-k],{k,0,n-2}];
    a[1] = 1;
    a[0] = 1;
    b[n_] := Sum[Binomial[n,k]a[k+1]a[n-k+1],{k,0,n}];
    Table[b[n], {n, 0, 100}]

Formula

a(n) = Sum_{k=0..n} C(n,k)*b(k+1)*b(n-k+1), where b(n) = A209305(n).
E.g.f.: A(x) = B'(x)^2, where B(x) is the e.g.f. of sequence A209305.