A209318 Number T(n,k) of partitions of n with k parts in which no part occurs more than twice; triangle T(n,k), n>=0, 0<=k<=A055086(n), read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 5, 3, 0, 1, 4, 6, 4, 1, 0, 1, 5, 8, 6, 2, 0, 1, 5, 10, 8, 3, 0, 1, 6, 11, 12, 5, 1, 0, 1, 6, 14, 14, 8, 1, 0, 1, 7, 16, 19, 11, 3, 0, 1, 7, 18, 23, 16, 5
Offset: 0
Examples
T(8,3) = 5: [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2]. T(8,4) = 3: [4,2,1,1], [3,3,1,1], [3,2,2,1]. T(9,3) = 6: [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2]. T(9,4) = 4: [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1]. T(9,5) = 1: [3,2,2,1,1]. Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 2, 2; 0, 1, 3, 2, 1; 0, 1, 3, 4, 1; 0, 1, 4, 5, 3; 0, 1, 4, 6, 4, 1;
Links
- Alois P. Heinz, Rows n = 0..400, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(expand(b(n-i*j, i-1)*x^j), j=0..min(2, n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..20);
-
Mathematica
max = 15; g = -1+Product[1+t*x^j+t^2*x^(2j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[Table[t[n, k], {k, 0, n}] /. {a__, 0 ..} -> {a}, {n, 0, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)