cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209318 Number T(n,k) of partitions of n with k parts in which no part occurs more than twice; triangle T(n,k), n>=0, 0<=k<=A055086(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 5, 3, 0, 1, 4, 6, 4, 1, 0, 1, 5, 8, 6, 2, 0, 1, 5, 10, 8, 3, 0, 1, 6, 11, 12, 5, 1, 0, 1, 6, 14, 14, 8, 1, 0, 1, 7, 16, 19, 11, 3, 0, 1, 7, 18, 23, 16, 5
Offset: 0

Views

Author

Alois P. Heinz, Jan 19 2013

Keywords

Examples

			T(8,3) = 5: [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2].
T(8,4) = 3: [4,2,1,1], [3,3,1,1], [3,2,2,1].
T(9,3) = 6: [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2].
T(9,4) = 4: [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1].
T(9,5) = 1: [3,2,2,1,1].
Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2, 1;
  0, 1, 2, 2;
  0, 1, 3, 2, 1;
  0, 1, 3, 4, 1;
  0, 1, 4, 5, 3;
  0, 1, 4, 6, 4, 1;
		

Crossrefs

Columns k=0-10 give: A000007, A057427, A004526, A230059 (conjectured), A320592, A320593, A320594, A320595, A320596, A320597, A320598.
Row sums give: A000726.
Row lengths give: A000267.
Cf. A002620, A008289 (no part more than once), A055086, A117147 (no part more than 3 times).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(expand(b(n-i*j, i-1)*x^j), j=0..min(2, n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    max = 15; g = -1+Product[1+t*x^j+t^2*x^(2j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[Table[t[n, k], {k, 0, n}] /. {a__, 0 ..} -> {a}, {n, 0, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)