A209329 Decimal expansion of the sum over the inverse products of adjacent odd primes.
1, 3, 4, 4, 2, 6, 5, 0, 9, 6, 9, 1, 7, 3, 3, 2, 2, 8
Offset: 0
Examples
0.134426509... = 1/(3*5) + 1/(5*7) + 1/(7*11) + 1/(11*13)+ ... = Sum_{n>=2} 1/A006094(n).
Links
Programs
-
PARI
{default(realprecision,19);s=0;q=1/3;forprime(p=1/q+1,10^9,s+=q*q=1./p);s} /* M. F. Hasler, Jan 22 2013 */
Formula
sum_{3 < p < 10^4} 1/(prevprime(p)*p) = 0.134416688[9]...
sum_{3 < p < 10^5} 1/(prevprime(p)*p) = 0.134425707...
sum_{3 < p < 10^6} 1/(prevprime(p)*p) = 0.1344264419...
sum_{3 < p < 10^7} 1/(prevprime(p)*p) = 0.13442650383...
sum_{3 < p < 10^8} 1/(prevprime(p)*p) = 0.13442650917[5]...
sum_{3 < p < 10^9} 1/(prevprime(p)*p) = 0.13442650964545...
Extrapolation of this data (using Aitken's method) indeed suggests a value of 0.134426509692, rounded to the last decimal place. Extrapolation of the ratios of the first differences (9.02e-6, 7.35e-7, 6.19e-8, 5.34e-9, 4.699e-10) yields subsequent terms (4.26e-11, 4.0e-12). - M. F. Hasler, Jan 22 2013
Extensions
More terms from R. J. Mathar, Feb 08 2013
Comments