cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209329 Decimal expansion of the sum over the inverse products of adjacent odd primes.

Original entry on oeis.org

1, 3, 4, 4, 2, 6, 5, 0, 9, 6, 9, 1, 7, 3, 3, 2, 2, 8
Offset: 0

Views

Author

R. J. Mathar, Jan 19 2013

Keywords

Comments

Contains the contribution from twin primes (A209328) plus other contributions from cousin primes (A143206) not already part of twin primes, sexy primes (A210477) not already accounted for, etc.
Summing up to (and including) 12-digit primes yields 0.134426509691698261. - Hans Havermann, Mar 17 2013

Examples

			0.134426509... = 1/(3*5) + 1/(5*7) + 1/(7*11) + 1/(11*13)+ ... = Sum_{n>=2} 1/A006094(n).
		

Crossrefs

Cf. A210473 (includes 1/(2*3)). Cf. also A085548.

Programs

  • PARI
    {default(realprecision,19);s=0;q=1/3;forprime(p=1/q+1,10^9,s+=q*q=1./p);s} /* M. F. Hasler, Jan 22 2013 */

Formula

sum_{3 < p < 10^4} 1/(prevprime(p)*p) = 0.134416688[9]...
sum_{3 < p < 10^5} 1/(prevprime(p)*p) = 0.134425707...
sum_{3 < p < 10^6} 1/(prevprime(p)*p) = 0.1344264419...
sum_{3 < p < 10^7} 1/(prevprime(p)*p) = 0.13442650383...
sum_{3 < p < 10^8} 1/(prevprime(p)*p) = 0.13442650917[5]...
sum_{3 < p < 10^9} 1/(prevprime(p)*p) = 0.13442650964545...
Extrapolation of this data (using Aitken's method) indeed suggests a value of 0.134426509692, rounded to the last decimal place. Extrapolation of the ratios of the first differences (9.02e-6, 7.35e-7, 6.19e-8, 5.34e-9, 4.699e-10) yields subsequent terms (4.26e-11, 4.0e-12). - M. F. Hasler, Jan 22 2013

Extensions

More terms from R. J. Mathar, Feb 08 2013