cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A006094 Products of 2 successive primes.

Original entry on oeis.org

6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
Offset: 1

Views

Author

Keywords

Comments

The Huntley reference would suggest prefixing the sequence with an initial 4 - Enoch Haga. [But that would conflict with the definition! - N. J. A. Sloane, Oct 13 2009]
Sequence appears to coincide with the sequence of numbers n such that the largest prime < sqrt(n) and the smallest prime > sqrt(n) divide n. - Benoit Cloitre, Apr 04 2002
This is true: p(n) < [ sqrt(a(n)) = sqrt(p(n)*p(n+1)) ] < p(n+1) by definition. - Jon Perry, Oct 02 2013
a(n+1) = smallest number such that gcd(a(n), a(n+1)) = prime(n+1). - Alexandre Wajnberg and Ray Chandler, Oct 14 2005
Also the area of rectangles whose side lengths are consecutive primes. E.g., the consecutive primes 7,11 produce a 7 X 11 unit rectangle which has area 77 square units. - Cino Hilliard, Jul 28 2006
a(n) = A001358(A172348(n)); A046301(n) = lcm(a(n), a(n+1)); A065091(n) = gcd(a(n), a(n+1)); A066116(n+2) = a(n+1)*a(n); A109805(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 13 2011
See A209329 for the sum of the reciprocals. - M. F. Hasler, Jan 22 2013
A078898(a(n)) = 3. - Reinhard Zumkeller, Apr 06 2015

References

  • H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subset of the squarefree semiprimes, A006881.
Subsequence of A256617 and A097889.

Programs

  • Haskell
    a006094 n = a006094_list !! (n-1)
    a006094_list = zipWith (*) a000040_list a065091_list
    -- Reinhard Zumkeller, Mar 13 2011
    
  • Haskell
    a006094_list = pr a000040_list
      where pr (n:m:tail) = n*m : pr (m:tail)
            pr _ = []
    -- Jean-François Antoniotti, Jan 08 2020
    
  • Magma
    [NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(ithprime):
    seq(a(n), n=1..43);  # Alois P. Heinz, Jan 02 2021
  • Mathematica
    Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
  • MuPAD
    ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    g(n) = for(x=1,n,print1(prime(x)*prime(x+1)",")) \\ Cino Hilliard, Jul 28 2006
    
  • PARI
    is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
    
  • Python
    from sympy import prime, primerange
    def aupton(nn):
        alst, prevp = [], 2
        for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p
        return alst
    print(aupton(43)) # Michael S. Branicky, Jun 15 2021
    
  • Python
    from sympy import prime, nextprime
    def A006094(n): return (p:=prime(n))*nextprime(p) # Chai Wah Wu, Oct 18 2024

Formula

A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
a(n) = A000040(n) * A000040(n+1). - Alois P. Heinz, Jan 02 2021

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A124012 Decimal expansion of Sum_{k>=1} 1/(k*prime(k)).

Original entry on oeis.org

8, 4, 8, 9, 6, 9, 0, 3, 4, 0, 4, 3
Offset: 0

Views

Author

Pierre CAMI, Nov 02 2006

Keywords

Comments

From Robert Price, Jul 14 2010: (Start)
This series converges very slowly. I could not find any transform that converges faster, so I did this by brute force using 256 bits of precision.
After k=596765000000 terms (p(k)=17581469834441) the partial sum is 0.848 969 034 043 245 206 069 544 346 415 327 714...
The next two digits are either 29 or 30. (End)
The table in the Example section shows, for increasing values of j, the results of computing the partial sum s(j) = Sum_{k=1..j} 1/(k*prime(k)) and adding to it an approximate value for the tail (i.e., the sum for all the terms k > j). See the Links entry for an explanation of the method used in approximating the size of the tail of the summation beyond the j-th prime. - Jon E. Schoenfield, Jan 20 2019

Examples

			0.848969034043...
From _Jon E. Schoenfield_, Jan 14 2019: (Start)
We can obtain prime(2^d) for d = 0..57 from the b-file for A033844. Given the above result from _Robert Price_, and letting j_RP = 596765000000, the partial sum through
   prime(j_RP) = 17581469834441
is
   s(j_RP) = Sum_{k=1..j_RP} 1/(k*prime(k))
           = 0.848969034043245206069544346415327714...;
adding to this actual partial sum s(j_RP) the approximate tail value
   t(j_RP) =
         h'(prime(j_RP), prime(2^40))
       + (Sum_{d=41..57} h'(prime(2^(d-1)), prime(2^d)))
       + lim_{x->infinity} h(prime(2^57), x)
(see the Links entry for an explanation) gives the result 0.84896903404330021273712255895762255... (which seems likely to be correct to at least 20 significant digits).
The table below gives, for j = 2^16, 2^17, ..., 2^32, and j_RP, the actual partial sum s(j) and the sum s(j) + t(j) where t(j) is the approximate tail value beyond prime(j).
.
   j             s(j)                s(j) + t(j)
  ====  ======================  ======================
  2^16  0.84896790758922908159  0.84896903393397518971
  2^17  0.84896850050492294891  0.84896903400552099072
  2^18  0.84896878057566843770  0.84896903404214147367
  2^19  0.84896891330602605081  0.84896903404317536927
  2^20  0.84896897639243509768  0.84896903404350431035
  2^21  0.84896900645590169648  0.84896903404376063663
  2^22  0.84896902081581006534  0.84896903404343742139
  2^23  0.84896902768965496764  0.84896903404337393698
  2^24  0.84896903098637626311  0.84896903404331189996
  2^25  0.84896903257029535468  0.84896903404329806633
  2^26  0.84896903333252861584  0.84896903404330030271
  2^27  0.84896903369988697984  0.84896903404330084536
  2^28  0.84896903387717904236  0.84896903404330042023
  2^29  0.84896903396285181513  0.84896903404330024036
  2^30  0.84896903400430044877  0.84896903404330021861
  2^31  0.84896903402437548991  0.84896903404330021472
  2^32  0.84896903403410856545  0.84896903404330021655
  ...            ...                     ...
  j_RP  0.84896903404324520607  0.84896903404330021274
(End)
		

Crossrefs

Extensions

Offset and leading zero corrected by R. J. Mathar, Jan 31 2009
Four more terms (4,0,4,3) from Robert Price, Jul 14 2010
Title and example edited by M. F. Hasler, Jan 13 2015

A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.

Original entry on oeis.org

1, 6, 5, 6, 1, 8, 4, 6, 5, 3, 9, 5
Offset: 0

Views

Author

Artur Jasinski, Sep 04 2022

Keywords

Comments

Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.
Convergence table:
k A001359(k) Sum_{j=1..k} 1/A001359(j)^2
10000000 3285916169 0.165618465394273171950874120818
20000000 7065898967 0.165618465394707600197099741096
30000000 11044807451 0.165618465394836120901019351544
40000000 15151463321 0.165618465394895965582366015390
50000000 19358093939 0.165618465394930089884704869090
60000000 23644223231 0.165618465394951950670948192842
Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - Hugo Pfoertner, Sep 28 2022

Examples

			0.165618465395...
		

Crossrefs

Extensions

Data extended to ...3, 9, 5 by Hugo Pfoertner, Sep 28 2022

A185380 Decimal expansion of sum 1/(p*(p+2)) over the primes p.

Original entry on oeis.org

2, 6, 3, 6, 7, 2, 0, 6, 1, 7, 6, 1, 1, 5, 3, 1, 7, 8, 7, 4, 9, 8, 4, 2, 1, 8, 8, 2, 3, 3, 7, 7, 6, 7, 5, 3, 0, 8, 7, 4, 9, 6, 3, 1, 8, 3, 9, 6, 7, 5, 6, 8, 0, 2, 1, 2, 2, 2, 3, 8, 1, 2, 6, 8, 3, 2, 2, 4, 3, 8, 9, 8, 1, 6, 3, 2, 2, 9, 8, 2, 4, 9, 8, 3, 9, 2, 2, 6, 6, 1, 7, 5, 4, 5, 1, 8, 0, 9, 6, 4, 0, 0, 6, 9, 9, 4
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Comments

If we omit the first term 1/(2*4)=0.125 from the sum, 0.138672... remains, which is an upper limit of A209329 in the sense that we "fake" prime gaps of 2 here [which are actually larger on average].

Examples

			0.263672061761153178749842188233776 .. = 1/(2*4) +1/(3*5) + 1/(5*7) + 1/(7*9) + 1/(11*13)+ ...
		

Crossrefs

Cf. A136141 (1/(p(p-1))), A179119 (1/(p(p+1))).

Programs

  • Maple
    read("transforms") ;
    Digits := 300 ;
    # insert coding of ZetaM(s,M) and Hurw(a) from A179119 here...
    A185380 := proc()
            Hurw(2) ;
    end proc:
    A185380() ;
  • PARI
    sumeulerrat(1/(p*(p+2))) \\ Amiram Eldar, Mar 19 2021

Formula

Equals -1/8 + Sum_{k>=2} (-1)^k * 2^(k-2) * P(k), where P is the prime zeta function. - Vaclav Kotesovec, Jan 13 2021

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021

A210473 Decimal expansion of Sum_{n>=1} 1/(prime(n)*prime(n+1)).

Original entry on oeis.org

3, 0, 1, 0, 9, 3, 1, 7, 6, 3, 5, 8, 3, 9, 9, 8, 9, 4
Offset: 0

Views

Author

M. F. Hasler, Jan 23 2013

Keywords

Comments

Sum of reciprocals of products of successive primes. Differs from A209329 only by the initial term 1/(2*3) = 1/6 = 0.16666...

Examples

			0.3010931763... = Sum_{n>=1} 1/(prime(n)*prime(n+1)).
= 1/(2*3) + 1/(3*5) + 1/(5*7)
+ 0.03731790933454338 (primes 10 < p(n+1) < 100)
+ 0.0017430141479028 (primes 100 < p(n+1) < 10^3)
+ 0.00011767024549033 (primes 10^3 < p(n+1) < 10^4)
+ 9.018426684045269 e-6 (primes 10^4 < p(n+1) < 10^5)
+ 7.3452282601302 e-7 (primes 10^5 < p(n+1) < 10^6)
+ 6.19161299373 e-8 (primes 10^6 < p(n+1) < 10^7)
+ 5.3439026467 e-9 (primes 10^7 < p(n+1) < 10^8)
+ 4.70035656 e-10 (primes 10^8 < p(n+1) < 10^9) + ...
		

Crossrefs

Programs

  • Mathematica
    digits = 10;
    f[n_Integer] := 1/(Prime[n]*Prime[n+1]);
    s = NSum[f[n], {n, 1, Infinity}, Method -> "WynnEpsilon", NSumTerms -> 2*10^6, WorkingPrecision -> MachinePrecision];
    RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Sep 05 2017 *)
  • PARI
    S(L=10^9,start=3)={my(s=0,q=1/precprime(start));forprime(p=1/q+1,L,s+=q*q=1./p);s} \\ Using 1./p is maybe a little less precise, but using s=0. and 1/p takes about 50% more time.
    
  • PARI
    {my( tee(x)=printf("%g,",x);x ); t=vector(8,n,tee(S(10^(n+1),10^n))); s=1/2/3+1/3/5+1/5/7; vector(#t,n,s+=t[n])} \\ Shows contribution of sums over (n+1)-digit primes (vector t) and the vector of partial sums; the final value is in s.

Formula

Equals 1/6 + A209329.

Extensions

Corrected and extended by Hans Havermann, Mar 17 2013 using the additional terms of A209329 from R. J. Mathar, Feb 08 2013

A342714 Decimal expansion of infinite sum of reciprocals of lesser twin primes, Sum_{n>=1} 1/A001359(n).

Original entry on oeis.org

1, 0, 5, 9, 0, 6, 4, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2021

Keywords

Comments

Alternative definition: infinite sum of reciprocals of primes whose distance to the next prime is equal to 2.
R. J. Mathar gave an estimate of 1.059064 for this constant in a comment at A209328. Dimitris Valianatos estimated the constant as 1.059064266555685... in a comment at A306539.

Examples

			Equals 1.05906426...
		

Crossrefs

Formula

Equals 1/3 + 1/5 + 1/11 + 1/17 + 1/29 + 1/41 + 1/59 + ...
Equals (A065421 + A306539)/2.

A357059 Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.

Original entry on oeis.org

0, 3, 1, 3, 2, 1, 6, 2, 0, 6, 4, 6
Offset: 0

Views

Author

Artur Jasinski, Sep 10 2022

Keywords

Comments

Convergence table:
k A029710(k) Sum_{j=1..k} 1/A029710(j)^2
10000000 3285441223 0.031321620645456519799598611681
20000000 7067090263 0.031321620645890982910821292996
30000000 11044597393 0.031321620646019474620358985896
40000000 15153534937 0.031321620646079307404248696076
50000000 19360462153 0.031321620646113421819579063642
60000000 23647877233 0.031321620646135276227114122713
70000000 28000392817 0.031321620646150384406674037099

Examples

			0.031321620646...
		

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[g1[2 n] = 0, {n, 1, 1000}]; Do[g2[2 n] = 0, {n, 1, 1000}]; Do[g3[2 n] = 0, {n, 1, 1000}]; Do[g4[2 n] = 0, {n, 1, 1000}]; Do[g[2 n] = 0, {n, 1, 1000}];
    w1 = 3; n = 3; Monitor[While[n < 10^10, w2 = NextPrime[w1]; kk = w2 - w1;
      If[kk < 2000, g[kk] = g[kk] + 1; g1[kk] = g1[kk] + N[1/w1, 1000];g2[kk] = g2[kk] + N[1/w1^2, 1000];g3[kk] = g3[kk] + N[1/w1^3, 1000];g4[kk] = g4[kk] + N[1/w1^4, 1000];
    If[IntegerQ[g[kk]/1000000], Print[{n, w1, kk, g[kk]}];If[kk == 4,AppendTo[aa, {n, w1, kk, g[kk], g1[kk], g2[kk], g3[kk], g4[kk]}]]]];w1 = w2; n++], n];aa

A227127 The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row.

Original entry on oeis.org

1, 1, 2, 8, 20, 12, 28, 16, 36, 60, 22, 72, 52, 28, 60, 96, 102, 36, 114, 80, 42, 132, 92, 144, 200, 104, 54, 112, 58, 120, 434, 128, 198, 68, 350, 72, 222, 228, 156, 240, 246, 84, 430, 88, 180, 92, 564, 576, 196, 100, 204, 312, 106, 540, 330, 336, 342, 116, 354, 240, 122
Offset: 0

Views

Author

Paul Curtz, Jul 02 2013

Keywords

Comments

1/A008578(n) and successive rows:
1, 1/2, 1/3, 1/5, 1/7,
1/2, 1/3, 2/5, 8/35, = c(n) = a(n)/b(n)
1/6, -2/15, 18/35,
3/10, -136/105,
67/42
b(n) is essentially A006094. See A209329.
a(n) yields to a permutation of A008578 (via 1, 1, 2, 8, 12, 16, 20, 22, ...): 1, 2, 3, 5, 11, 17, 7, 29,... .

Examples

			a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35.
a(3) = 4*2 = 8, a(4) = 5*4 = 20.
		

Crossrefs

Programs

  • Mathematica
    a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* Jean-François Alcover, Jul 04 2013 *)

Formula

a(n) = (n+1)*A001223(n-1), for n>=3.
Showing 1-9 of 9 results.