A116360 Smallest number having exactly n partitions into products of two successive primes (A006094), or -1 if no such number exists.
1, 6, 30, 60, 90, 105, 120, 135, 143, 158, 155, 167, 173, 182, 185, 207, 197, 203, 212, 215, 221, 231, 227, 233, 239, 242, 256, 245, 251, 261, 257, 260, 263, 266, 282, 272, 275, 278, 281, 291, -1, 287, 290, 293, 296, 309, 312, 302, 305, 319, 308, 314, -1, 317, 322, 320
Offset: 0
Keywords
A116357 Number of partitions of n into products of two successive primes (A006094).
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 3, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 3, 3, 0, 2, 3, 1, 3, 3, 1, 2, 3, 1, 3, 4, 1, 3, 3, 1, 4, 4, 1, 3, 3, 2, 4, 4, 1, 3, 5
Offset: 1
Keywords
Examples
a(41) = #{2*3 + 5*7} = 1; a(42) = #{2*3+2*3+2*3+2*3+2*3+2*3+2*3, 2*3+2*3+3*5+3*5} = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 200: # to get a(1) to a(N) Primes:= select(isprime,[2,seq(i,i=3..1+floor(sqrt(N)),2)]): G:= mul(1/(1 - x^(Primes[i]*Primes[i+1])), i=1..nops(Primes)-1): S:= series(G,x,N+1): seq(coeff(S,x,j),j=1..N); # Robert Israel, Dec 09 2016
-
Mathematica
m = 105; kmax = PrimePi[Sqrt[m]]; Product[1/(1-x^(Prime[k]*Prime[k+1])), {k, 1, kmax}] + O[x]^(m+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)
Formula
G.f.: Product_{k >= 1} 1/(1 - x^(prime(k)*prime(k+1))). - Robert Israel, Dec 09 2016
A245630 Products of terms of A006094 (products of 2 successive primes).
1, 6, 15, 35, 36, 77, 90, 143, 210, 216, 221, 225, 323, 437, 462, 525, 540, 667, 858, 899, 1147, 1155, 1225, 1260, 1296, 1326, 1350, 1517, 1763, 1938, 2021, 2145, 2491, 2622, 2695, 2772, 3127, 3150, 3240, 3315, 3375, 3599, 4002, 4087, 4757, 4845, 5005, 5148, 5183
Offset: 1
Keywords
Comments
Multiplicative monoid generated by products of two successive primes.
All positive integers of the form Product_{i>=1} (prime(i)*prime(i+1))^m_i for integers m_i >= 0 (all but finitely many m_i = 0).
The smallest subset A of the positive integers such that
1) 1 is in A
2) if n is in A then so is n * prime(i) * prime(i+1) for all i.
Subsequence of A028260.
If A059897(.,.) is used as multiplicative operator in place of standard integer multiplication, A006094 generates A030229 (products of an even number of distinct primes). - Peter Munn, Oct 04 2019
Examples
1 is in the sequence. 6 = 2*3 is in the sequence. 36 = (2*3)^2 is in the sequence. 90 = (2*3) * (3*5) is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..6742
- Paul Erdős, Solution to Advanced Problem 4413, American Mathematical Monthly, 59 (1952) 259-261.
Programs
-
Maple
N:= 10^6: # to get all terms <= N PP:= [seq(ithprime(i)*ithprime(i+1),i=1.. numtheory[pi](floor(sqrt(N)))-1)]: ext:= (x,p) -> seq(x*p^i,i=0..floor(log[p](N/x))): S:= {1}: for i from 1 to nops(PP) do S:= map(ext,S,PP[i]) od: S;
-
Mathematica
M = 10^6; T = Table[Prime[n] Prime[n + 1], {n, 1, PrimePi[Sqrt[M]]}]; T2 = Select[Join[T, T^2], # <= M &]; Join[{1}, T2 //. {a___, b_, c___, d_, e___} /; b*d <= M && FreeQ[{a, b, c, d, e}, b*d] :> Sort[{a, b, c, d, e, b*d}]] (* Jean-François Alcover, Apr 12 2019 *)
-
PARI
f(n) = prime(n)*prime(n+1); \\ A006094 mul(x,y) = x*y; lista(nn) = {my(v = vector(nn, k, f(k)), lim = f(nn+1), ok = 0, nv); while (!ok, nv = select(x->(x
Michel Marcus, May 10 2021
Formula
Limit_{n->oo} a(n)/n^2 = Product_{i>=1} (1 - 1/sqrt(prime(i)*prime(i+1)))^2 / (1 - 1/prime(i))^2 = 1/A267251^2 (see Erdős reference).
A157742 A006094(n+3) mod 9.
8, 5, 8, 5, 8, 5, 1, 8, 4, 5, 8, 5, 7, 4, 8, 1, 5, 8, 7, 5, 7, 2, 5, 8, 5, 8, 5, 5, 5, 1, 8, 2, 8, 1, 4, 5, 1, 7, 8, 2, 8, 5, 8, 4, 1, 5, 8, 5, 4, 8, 2, 4, 1, 7, 8, 7, 5, 8, 2, 5, 5, 8, 5, 5, 1, 2, 8, 5, 7, 2, 1, 4, 5, 1, 2, 5, 2, 2, 8, 2, 8, 7, 5, 7, 2, 5, 8, 5, 7, 2, 5, 2, 5, 4, 4, 8, 1, 7, 2, 4, 1, 8, 4, 2, 7
Offset: 0
Comments
Values of 0, 3 or 6 are obviously absent, because that would indicate divisibility by 3 which does not happen for prime products involving primes >3.
Extensions
Edited by R. J. Mathar, Apr 01 2009
A088328 Table read by rows where row n contains lower twin primes of the form k*A002110(n)-1 in the range 0 < k < A006094(n+1).
3, 5, 11, 17, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 29, 59, 149, 179, 239, 269, 419, 569, 599, 659, 809, 1019, 1049, 1229, 1319, 1619, 1949, 2129, 419, 1049, 2309, 2729, 3359, 5879, 6089, 6299, 7349, 7559, 8819, 9239, 10499, 10709
Offset: 1
Comments
Some of the values k*primorial(n)-1 generated by k in the range 1 to prime(n+1)*prime(n+2)-1 are not lower twin primes, A001359, so the list of k that produces the n-th row of the irregular table, as shown in A088329, is not a list of necessarily consecutive integers.
If n>2 the count of k values is near or greater than 4*log(4*p(n+1)); is this related to a proof of the infinity of twin prime pairs?
Examples
2*2 -1 = 3, k=2, n=1 3*2 -1 = 5, k=3, n=1 6*2 -1 = 11, k=6, n=1 9*2 -1 = 17, k=9, n=1 The first three rows are: 3,5,11,17; generated by k=2, 3, 6, 9 5,11,17,29,41,59,71,101,107,137,149,179,191,197; 29,59,149,179,239,269,419,569,599,659,809,1019,1049,1229,1289,1319,1619,1949,2129;
Programs
-
Maple
isA001359 := proc(n) option remember ; return isprime(n) and isprime(n+2) ; end: A002110 := proc(n) local i ; if n = 0 then 1; else mul(ithprime(i),i=1..n) ; end if; end proc: A006094 := proc(n) return ithprime(n)*ithprime(n+1) ; end proc: A088328 := proc(n,k) option remember; for j from 1 to A006094(n+1)-1 do a := j*A002110(n)-1 ; if isA001359(a) and k =1 then return a ; elif isA001359(a) and a > procname(n,k-1) then return a ; end if; end do; return -1 ; end proc: for n from 1 to 10 do for k from 1 do T := A088328(n,k) ; if T < 0 then break; else printf("%d,",T) ; end if; end do; printf("\n") ; od: # R. J. Mathar, Oct 30 2009
Extensions
Edited by R. J. Mathar, Oct 30 2009
A157940 Numbers n divisible by the largest prime <= sqrt(n) which are not in A001248 (primes squared) or A006094 (product of two consecutive primes).
8, 12, 18, 24, 30, 40, 45, 56, 63, 70, 84, 98, 105, 112, 132, 154, 165, 182, 195, 208, 234, 260, 273, 286, 306, 340, 357, 380, 399, 418, 456, 475, 494, 513, 552, 575, 598, 621, 644, 690, 736, 759, 782, 805, 828, 870, 928, 957, 992, 1023, 1054, 1085, 1116, 1178
Offset: 1
Keywords
Comments
A subsequence of A157941.
Examples
For numbers less than 4 the definition does not make sense, since there's no prime < 2=sqrt(4). a(1)=8 which is divisible by 2 = precprime(sqrt(8)) and neither a prime squared (as would be 4 and 9) nor product of consecutive primes. 5 and 7 are not in this sequence, since not a multiple of 2=precprime(sqrt(5)) =precprime(sqrt(7)). 6 is not in the sequence, since it is the product of 2=precprime(sqrt(6)) and the following prime, 3. For the same reason, 15 is excluded.
Programs
-
PARI
for( n=5,1999, n % precprime(sqrtint(n)) & next; n % nextprime(sqrtint(n-1)+1) & print1(n","))
A240052 2nd arithmetic derivative of products of 2 successive prime numbers (A006094).
1, 12, 16, 21, 44, 31, 60, 41, 56, 92, 72, 71, 124, 123, 140, 240, 244, 448, 121, 384, 236, 297, 176, 161, 249, 284, 247, 540, 191, 608, 221, 272, 380, 912, 520, 380, 1024, 371, 428, 912, 852, 508, 1472, 433, 696, 297, 293, 705, 860, 493, 716, 1456, 668, 512, 924, 636, 1188, 552, 669, 764, 2112, 1340, 521, 1504, 951, 1836, 672, 1176, 1300, 1107, 1076, 737, 908, 1520, 641, 776, 661, 821, 1647, 1416, 1828
Offset: 1
Keywords
Comments
Examples
(2*3)’ = 1*3+2*1 = 5; (5)’ = 1; (2^2)’ = 2*2^1 = 2*2 = 4.
Links
- Freimut Marschner, Table of n, a(n) for n = 1..429
- Wikipedia, Arithmetic derivative
- Wikipedia, p-derivation
Programs
-
Haskell
a240052 = a068346 . a006094 -- Reinhard Zumkeller, Apr 15 2014
-
Maple
with(numtheory); P:=proc(q) local a,b,c,p,n; for n from 1 to q do a:=ithprime(n)*ithprime(n+1); b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); print(c); od; end: P(10^3); # Paolo P. Lava, Apr 01 2014
A240053 3rd Arithmetic derivation of products of 2 successive prime numbers (A006094).
0, 16, 32, 10, 48, 1, 92, 1, 92, 96, 156, 1, 128, 44, 188, 608, 248, 1408, 22, 1472, 240, 324, 368, 30, 86, 288, 32, 1188, 1, 1552, 30, 560, 476, 2176, 924, 476, 5120, 60, 432, 2176, 1148, 512, 4480, 1, 1300, 324, 1, 391, 1052, 46, 720, 3232, 672, 2304, 1448, 860, 2484, 1036, 226, 768, 7232, 1628
Offset: 1
Keywords
Comments
The first arithmetic derivation of products of 2 successive prime numbers (A006094) is the sum of 2 successive prime numbers (A001043). A001043 = (A006094)’. The second arithmetic derivation is (A240052) = (A001043)’ = (A006094)’’. The third arithmetic derivation of products of 2 successive prime numbers (A006094) is a(n) = (A240052)’ = (A001043)’’ = (A006094)’’’.
Examples
a(12)=(A006094(12))'''=(37*41)'''=(A001043(12))''=(78)''=(71)'=1; a(14)=(A006094(14))'''=(43*47)'''=(A001043(12))''=(90)''=(123)'=44.
Links
- Freimut Marschner, Table of n, a(n) for n = 1..429
- Wikipedia, Arithmetic derivative
- Wikipedia, p-derivation
Crossrefs
Programs
-
Maple
with(numtheory); P:= proc(q) local a,b,c,d,n,p; a:=ithprime(n)*ithprime(n+1); for n from 1 to q do a:=ithprime(n)*ithprime(n+1); b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); d:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]); print(d); od; end: P(10^4); # Paolo P. Lava, Apr 07 2014
A088329
Table read by rows where row n consists of all k in the range 0A006094(n+1) such that k*A002110(n)-1 are lower twin primes.
2, 3, 6, 9, 1, 2, 3, 5, 7, 10, 12, 17, 18, 23, 25, 30, 32, 33, 1, 2, 5, 6, 8, 9, 14, 19, 20, 22, 27, 34, 35, 41, 43, 44, 54, 65, 71, 2, 5, 11, 13, 16, 28, 29, 30, 35, 36, 42, 44, 50, 51, 55, 57, 69, 73, 86, 95, 104, 121, 125, 128, 135, 140, 1, 4, 5
Offset: 1
Comments
The lower twin primes generated by this kind of multiplication of k and primorials are in A088328.
Examples
The first 4 rows are: 2,3,6,9 ; 1,2,3,5,7,10,12,17,18,23,25,30,32,33; 1,2,5,6,8,9,14,19,20,22,27,34,35,41,43,44,54,65,71 ; 2,5,11,13,16,28,29,30,35,36,42,44,50,51,55,57,69,73,86,95,104,121,125,128,135,140;
Extensions
Edited by R. J. Mathar, Oct 30 2009
A240054 4th arithmetic derivative of products of 2 successive prime numbers (A006094).
0, 32, 80, 7, 112, 0, 96, 0, 96, 272, 220, 0, 448, 48, 192, 1552, 380, 5056, 13, 4480, 608, 756, 752, 31, 45, 912, 80, 2484, 0, 3120, 31, 1312, 572, 7744, 1448, 572, 26624, 92, 1296, 7744, 1340, 2304, 17216, 0, 1920, 756, 0, 40, 1056, 25, 2064, 8112, 2000, 10752, 2180, 1052, 5076, 1212, 115, 3328, 21760, 1820
Offset: 1
Keywords
Comments
Let a'=a1 be the first arithmetic derivative, then a2 is the second and so on. It is interesting to examine the length of successive arithmetic derivatives ending with 1. For example, a(168) = 445 is the 4th arithmetic derivative of prime(168)*prime(169) = 997*1009 = 1005973. The example given here is of length 11; that means that the 11th arithmetic derivative of 1005973 is 1.
Examples
(997*1009)' = a, a' = a1 = 2006, a2 = 1155, a3 = 886, a4 = 445, a5 = 94, a6 = 49, a7 = 14, a8 = 9, a9 = 6, a10 = 5, a11 = 1.
Links
- Freimut Marschner, Table of n, a(n) for n = 1..429
- Wikipedia, Arithmetic derivative
- Wikipedia, p-derivation
Programs
-
Maple
with(numtheory); P:= proc(q) local a,b,c,d,f,n,p; a:=ithprime(n)*ithprime(n+1); for n from 1 to q do a:=ithprime(n)*ithprime(n+1); b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); d:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]); f:=d*add(op(2,p)/op(1,p),p=ifactors(d)[2]); print(d); od; end: P(10^4); # Paolo P. Lava, Apr 07 2014
Comments
Examples
Links
Crossrefs
Extensions