cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A245636 Number of terms of A245630 <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Robert Israel, Jul 28 2014

Keywords

Examples

			The first two terms of A245630 are 1 and 6, so a(n) = 1 for 1 <= n <= 5 and a(6) = 2.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get a(1) to a(N)
    PP:= [seq(ithprime(i)*ithprime(i+1), i=1.. numtheory[pi](floor(sqrt(N)))-1)]:
    ext:= (x, p) -> seq(x*p^i, i=0..floor(log[p](N/x))):
    S:= {1}: for i from 1 to nops(PP) do S:= map(ext, S, PP[i]) od:
    E:= Array(1..N):
    for s in S do E[s]:= 1 od:
    A:= map(round,Statistics:-CumulativeSum(E)):
    seq(A(i),i=1..N);
  • Mathematica
    M = 10^4;
    T = Table[Prime[n] Prime[n+1], {n, 1, PrimePi[Sqrt[M]]}];
    T2 = Select[Join[T, T^2], # <= M&];
    S = Join[{1}, T2 //. {a___, b_, c___, d_, e___} /; b*d <= M && FreeQ[{a, b, c, d, e}, b*d] :> Sort[{a, b, c, d, e, b*d}]];
    ee = Table[0, {M}];
    Scan[Set[ee[[#]], 1]&, S];
    Accumulate[ee] (* Jean-François Alcover, Apr 17 2019 *)

Formula

As n -> infinity, a(n)/sqrt(n) -> Product_{i=1..infinity} (1 - 1/prime(i))/(1 - (prime(i)*prime(i+1))^(-1/2)), see Erdős reference.

A030229 Numbers that are the product of an even number of distinct primes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 210, 213, 214
Offset: 1

Views

Author

Keywords

Comments

These are the positive integers k with moebius(k) = 1 (cf. A008683). - N. J. A. Sloane, May 18 2021
From Enrique Pérez Herrero, Jul 06 2012: (Start)
This sequence and A030059 form a partition of the squarefree numbers set: A005117.
Also solutions to equation mu(n)=1.
Sum_{n>=1} 1/a(n)^s = (Zeta(s)^2 + Zeta(2*s))/(2*Zeta(s)*Zeta(2*s)).
(End)
A008683(a(n)) = 1; a(A220969(n)) mod 2 = 0; a(A220968(n)) mod 2 = 1. - Reinhard Zumkeller, Dec 27 2012
Characteristic function for values of a(n) = (mu(n)+1)! - 1, where mu(n) is the Mobius function (A008683). - Wesley Ivan Hurt, Oct 11 2013
Conjecture: For the matrix M(i,j) = 1 if j|i and 0 otherwise, Inverse(M)(a,1) = -1, for any a in this sequence. - Benedict W. J. Irwin, Jul 26 2016
Solutions to the equation Sum_{d|n} mu(d)*d = Sum_{d|n} mu(n/d)*d. - Torlach Rush, Jan 13 2018
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = n, where sigma(n) is the sum of divisors function (A000203). - Robert D. Rosales, May 20 2024
From Peter Munn, Oct 04 2019: (Start)
Numbers n such that omega(n) = bigomega(n) = 2*k for some integer k.
The squarefree numbers in A000379.
The squarefree numbers in A028260.
This sequence is closed with respect to the commutative binary operation A059897(.,.), thus it forms a subgroup of the positive integers under A059897(.,.). A006094 lists a minimal set of generators for this subgroup. The lexicographically earliest ordered minimal set of generators is A100484 with its initial 4 removed.
(End)
The asymptotic density of this sequence is 3/Pi^2 (cf. A104141). - Amiram Eldar, May 22 2020

Examples

			(empty product), 2*3, 2*5, 2*7, 3*5, 3*7, 2*11, 2*13, 3*11, 2*17, 5*7, 2*19, 3*13, 2*23,...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995
  • S. Ramanujan, Collected Papers, pp. xxiv, 21.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a030229 n = a030229_list !! (n-1)
    a030229_list = map (+ 1) $ elemIndices 1 a008683_list
    -- Reinhard Zumkeller, Dec 27 2012
    
  • Maple
    a := n -> `if`(numtheory[mobius](n)=1,n,NULL); seq(a(i),i=1..214); # Peter Luschny, May 04 2009
    with(numtheory); t := [ ]: f := [ ]: for n from 1 to 250 do if mobius(n) = 1 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # Wesley Ivan Hurt, Oct 11 2013
    # alternative
    A030229 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if numtheory[mobius](a) = 1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A030229(n),n=1..40) ; # R. J. Mathar, Sep 22 2020
  • Mathematica
    Select[Range[214], MoebiusMu[#] == 1 &] (* Jean-François Alcover, Oct 04 2011 *)
  • PARI
    isA030229(n)= #(n=factor(n)[,2]) % 2 == 0 && (!n || vecmax(n)==1 )
    
  • PARI
    is(n)=moebius(n)==1 \\ Charles R Greathouse IV, Jan 31 2017
    for(n=1,500, isA030229(n)&print1(n",")) \\ M. F. Hasler
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A030229(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,x.bit_length(),2)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - Charles R Greathouse IV, Oct 04 2011; corrected Sep 07 2017
{a(n)} = {m : m = A059897(A030059(k), p), k >= 1} for prime p, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 04 2019

A332820 Integers in the multiplicative subgroup of positive rationals generated by the products of two consecutive primes and the cubes of primes. Numbers k for which A048675(k) is a multiple of three.

Original entry on oeis.org

1, 6, 8, 14, 15, 20, 26, 27, 33, 35, 36, 38, 44, 48, 50, 51, 58, 63, 64, 65, 68, 69, 74, 77, 84, 86, 90, 92, 93, 95, 106, 110, 112, 117, 119, 120, 122, 123, 124, 125, 141, 142, 143, 145, 147, 156, 158, 160, 161, 162, 164, 170, 171, 177, 178, 185, 188, 196, 198, 201, 202, 208, 209, 210, 214, 215, 216, 217, 219, 221, 225
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between this sequence, A332821 and A332822, which list the integers in respective cosets of the subgroup.
As the sequence lists the integers in a multiplicative subgroup of the positive rationals, the sequence is closed under multiplication and, provided the result is an integer, under division.
It follows that for any n in this sequence, all powers n^k are present (k >= 0), as are all cubes.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting numbers are a permutation of the full sequence; and if we take the square root of each square term we get the full sequence.
There are no primes in the sequence, therefore if k is present and p is a prime, k*p and k/p are absent (noting that k/p might not be an integer). This property extends from primes to all terms of A050376 (often called Fermi-Dirac primes), therefore to squares of primes, 4th powers of primes etc.
The terms are the even numbers in A332821 halved. The terms are also the numbers m such that 5m is in A332821, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332822, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332822, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332821, which consists exactly of those numbers. These properties extend in a pattern of alternating primes as described in the previous paragraph.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.
If m and n are in this sequence then so is m*n (the definition of "multiplicative semigroup"), while if n is in this sequence, and x is in the complement A359830, then n*x is in A359830. This essentially follows from the fact that A048675 is totally additive sequence. Compare to A329609. - Antti Karttunen, Jan 17 2023

Crossrefs

Positions of zeros in A332823; equivalently, numbers in row 3k of A277905 for some k >= 0.
Cf. A048675, A195017, A332821, A332822, A353350 (characteristic function), A353348 (its Dirichlet inverse), A359830 (complement).
Subsequences: A000578\{0}, A006094, A090090, A099788, A245630 (A191002 in ascending order), A244726\{0}, A325698, A338471, A338556, A338907.
Subsequence of {1} U A268388.

Programs

  • Mathematica
    Select[Range@ 225, Or[Mod[Total@ #, 3] == 0 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]], # == 1] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332820(n) =  { my(f = factor(n)); !((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); };

Formula

{a(n) : n >= 1} = {1} U {2 * A332822(k) : k >= 1} U {A003961(a(k)) : k >= 1}.
{a(n) : n >= 1} = {1} U {a(k)^2 : k >= 1} U {A331590(2, A332822(k)) : k >= 1}.
From Peter Munn, Mar 17 2021: (Start)
{a(n) : n >= 1} = {k : k >= 1, 3|A048675(k)}.
{a(n) : n >= 1} = {k : k >= 1, 3|A195017(k)}.
{a(n) : n >= 1} = {A332821(k)/2 : k >= 1, 2|A332821(k)}.
{a(n) : n >= 1} = {A332822(k)/3 : k >= 1, 3|A332822(k)}.
(End)

Extensions

New name from Peter Munn, Mar 08 2021

A267251 Decimal expansion of Product_{i>=1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))).

Original entry on oeis.org

6, 7, 2, 9, 3, 3, 8, 8, 1, 7, 9, 8, 5, 9, 7, 7, 0
Offset: 0

Views

Author

Michel Marcus, Jan 12 2016

Keywords

Examples

			0.67293388179859770...
From _Jon E. Schoenfield_, Jan 28 2018: (Start)
Define the partial product y_j = Product_{i=1..PrimePi(j)-1} (1-1/prime(i))/(1-1/sqrt(prime(i)*prime(i+1))); then 2*y_(2^b) - y_(2^(b-1)) converges fairly quickly to lim_{j->infinity} y_j = 0.67293388179859770...:
   b           y_(2^b)            2*y_(2^b) - y_(2^(b-1))
  ==   ========================   ========================
   1   1.0000000000000000000...   ------------------------
   2   0.8449489742783178098...   0.6898979485566356196...
   3   0.7310664129192713972...   0.6171838515602249847...
   4   0.7016018086413063157...   0.6721372043633412342...
   5   0.6843047236120372449...   0.6670076385827681741...
   6   0.6785904879742426949...   0.6728762523364481450...
   7   0.6756179719208981466...   0.6726454558675535982...
   8   0.6742838913222028614...   0.6729498107235075762...
   9   0.6735974784100733488...   0.6729110654979438362...
  10   0.6732641297588515055...   0.6729307811076296623...
  11   0.6730990828541563251...   0.6729340359494611447...
  12   0.6730161366254012027...   0.6729331903966460803...
  13   0.6729749724000593392...   0.6729338081747174757...
  14   0.6729544253323538140...   0.6729338782646482887...
  15   0.6729441568308331961...   0.6729338883293125783...
  16   0.6729390172929284098...   0.6729338777550236236...
  17   0.6729364489209538789...   0.6729338805489793480...
  18   0.6729351653593885893...   0.6729338817978232998...
  19   0.6729345235639937111...   0.6729338817685988329...
  20   0.6729342026805519869...   0.6729338817971102627...
  21   0.6729340422395265924...   0.6729338817985011978...
  22   0.6729339620187032430...   0.6729338817978798937...
  23   0.6729339219086747633...   0.6729338817986462835...
  24   0.6729339018535990721...   0.6729338817985233809...
  25   0.6729338918261069776...   0.6729338817986148831...
  26   0.6729338868123465563...   0.6729338817985861350...
  27   0.6729338843054725858...   0.6729338817985986153...
  28   0.6729338830520350245...   0.6729338817985974632...
  29   0.6729338824253162288...   0.6729338817985974332...
  30   0.6729338821119569733...   0.6729338817985977178...
  31   0.6729338819552773332...   0.6729338817985976930...
  32   0.6729338818769375185...   0.6729338817985977038...
  33   0.6729338818377676111...   0.6729338817985977038...
  34   0.6729338818181826575...   0.6729338817985977039...
(End)
		

Crossrefs

Programs

  • Mathematica
    Take[First@ RealDigits@ N[Product[(1 - 1/Prime@ i)/(1 - 1/Sqrt[Prime[i] Prime[i + 1]]), {i, 100000}]], 5] (* Michael De Vlieger, Jan 12 2016 *)

Extensions

Three more digits from Jean-François Alcover, Jan 13 2016
Nine more digits from Jon E. Schoenfield, Jan 28 2018
Showing 1-4 of 4 results.