A245636 Number of terms of A245630 <= n.
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1
Keywords
Examples
The first two terms of A245630 are 1 and 6, so a(n) = 1 for 1 <= n <= 5 and a(6) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Paul Erdős, Solution to Advanced Problem 4413, American Mathematical Monthly, 59 (1952) 259-261.
Programs
-
Maple
N:= 10^4: # to get a(1) to a(N) PP:= [seq(ithprime(i)*ithprime(i+1), i=1.. numtheory[pi](floor(sqrt(N)))-1)]: ext:= (x, p) -> seq(x*p^i, i=0..floor(log[p](N/x))): S:= {1}: for i from 1 to nops(PP) do S:= map(ext, S, PP[i]) od: E:= Array(1..N): for s in S do E[s]:= 1 od: A:= map(round,Statistics:-CumulativeSum(E)): seq(A(i),i=1..N);
-
Mathematica
M = 10^4; T = Table[Prime[n] Prime[n+1], {n, 1, PrimePi[Sqrt[M]]}]; T2 = Select[Join[T, T^2], # <= M&]; S = Join[{1}, T2 //. {a___, b_, c___, d_, e___} /; b*d <= M && FreeQ[{a, b, c, d, e}, b*d] :> Sort[{a, b, c, d, e, b*d}]]; ee = Table[0, {M}]; Scan[Set[ee[[#]], 1]&, S]; Accumulate[ee] (* Jean-François Alcover, Apr 17 2019 *)
Formula
As n -> infinity, a(n)/sqrt(n) -> Product_{i=1..infinity} (1 - 1/prime(i))/(1 - (prime(i)*prime(i+1))^(-1/2)), see Erdős reference.
Comments