cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A048716 Numbers n such that binary expansion matches ((0)*00(1?)1)*(0*).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 17, 18, 19, 24, 25, 32, 33, 34, 35, 36, 38, 48, 49, 50, 51, 64, 65, 66, 67, 68, 70, 72, 73, 76, 96, 97, 98, 99, 100, 102, 128, 129, 130, 131, 132, 134, 136, 137, 140, 144, 145, 146, 147, 152, 153, 192, 193, 194, 195, 196, 198, 200, 201
Offset: 1

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

If bit i is 1, then bits i+-2 must be 0. All terms satisfy A048725(n) = 5*n.
It appears that n is in the sequence if and only if C(5n,n) is odd (cf. A003714). - Benoit Cloitre, Mar 09 2003
Yes, as remarked in A048715, "This is easily proved using the well-known result that the multiplicity with which a prime p divides C(n+m,n) is the number of carries when adding n+m in base p." - Jason Kimberley, Dec 21 2011
A116361(a(n)) <= 2. - Reinhard Zumkeller, Feb 04 2006

Crossrefs

Superset of A048715 and A048719. Union of A004742 and A003726.

Programs

  • Mathematica
    Reap[Do[If[OddQ[Binomial[5n, n]], Sow[n]], {n, 0, 400}]][[2, 1]]
    (* Second program: *)
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, MatchQ[bb, {0}|{1}|{1, 1}|{_, 0, , 1, __}|{_ 1, , 0, __}] && !MatchQ[bb, {_, 1, , 1, __}]];
    Select[Range[0, 201], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=!bitand(n,n>>2) \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    list(lim)=my(v=List(),n,t); while(n<=lim, t=bitand(n,n>>2); if(t, n+=1<Charles R Greathouse IV, Oct 22 2021

A115847 Integers i such that 17*i = 17 X i, i.e., 16*i XOR i = 17*i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 36, 37, 40, 41, 44, 45, 48, 52, 56, 60, 64, 65, 66, 67, 72, 73, 74, 75, 80, 82, 88, 90, 96, 97, 104, 105, 112, 120, 128, 129, 130, 131, 132, 133, 134, 135, 144, 146, 148, 150
Offset: 0

Views

Author

Antti Karttunen, Feb 01 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
A116361(a(n)) <= 4. - Reinhard Zumkeller, Feb 04 2006

Crossrefs

Cf. A115848 shows this sequence in binary. Complement of A115849. Differs from A032966 for the first time at n=25, where A032966(25)=34 while a(25)=33.

Programs

A115845 Numbers n such that there is no bit position where the binary expansions of n and 8n are both 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17, 20, 21, 24, 28, 32, 33, 34, 35, 40, 42, 48, 49, 56, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 84, 85, 96, 97, 98, 99, 112, 113, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 142, 160, 161, 162, 163, 168, 170, 192
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2006

Keywords

Comments

Equivalently, numbers n such that 9*n = 9 X n, i.e., 8*n XOR n = 9*n. Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Equivalently, numbers n such that the binomial coefficient C(9n,n) (A169958) is odd. - Zak Seidov, Aug 06 2010
The equivalence of these three definitions follows from Lucas's theorem on binomial coefficients. - N. J. A. Sloane, Sep 01 2010
Clearly all numbers k*2^i for 1 <= k <= 7 have this property. - N. J. A. Sloane, Sep 01 2010
A116361(a(n)) <= 3. - Reinhard Zumkeller, Feb 04 2006

Crossrefs

A115846 shows this sequence in binary.
A033052 is a subsequence.

Programs

  • Mathematica
    Reap[Do[If[OddQ[Binomial[9n,n]],Sow[n]],{n,0,400}]][[2,1]] (* Zak Seidov, Aug 06 2010 *)
  • PARI
    is(n)=!bitand(n,n<<3) \\ Charles R Greathouse IV, Sep 23 2012

Formula

a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 23 2012

Extensions

Edited with a new definition by N. J. A. Sloane, Sep 01 2010, merging this sequence with a sequence submitted by Zak Seidov, Aug 06 2010

A116357 Number of partitions of n into products of two successive primes (A006094).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 3, 0, 1, 2, 1, 2, 3, 0, 1, 3, 1, 3, 3, 0, 2, 3, 1, 3, 3, 1, 2, 3, 1, 3, 4, 1, 3, 3, 1, 4, 4, 1, 3, 3, 2, 4, 4, 1, 3, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 12 2006

Keywords

Comments

a(A116358(n)) = 0; a(A116359(n)) > 0;
a(n) < A101048(n).

Examples

			a(41) = #{2*3 + 5*7} = 1;
a(42) = #{2*3+2*3+2*3+2*3+2*3+2*3+2*3, 2*3+2*3+3*5+3*5} = 2.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1) to a(N)
    Primes:= select(isprime,[2,seq(i,i=3..1+floor(sqrt(N)),2)]):
    G:= mul(1/(1 - x^(Primes[i]*Primes[i+1])), i=1..nops(Primes)-1):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Dec 09 2016
  • Mathematica
    m = 105; kmax = PrimePi[Sqrt[m]]; Product[1/(1-x^(Prime[k]*Prime[k+1])), {k, 1, kmax}] + O[x]^(m+1) // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 09 2019, after Robert Israel *)

Formula

G.f.: Product_{k >= 1} 1/(1 - x^(prime(k)*prime(k+1))). - Robert Israel, Dec 09 2016

A179485 Sums of two successive primes s such that s+-3 are primes.

Original entry on oeis.org

8, 100, 1120, 1220, 1300, 2240, 2380, 2414, 3536, 3634, 4906, 4940, 5566, 5740, 6706, 7240, 8864, 9224, 9394, 10136, 10850, 12040, 12476, 12586, 12920, 13180, 13334, 13754, 14630, 14720, 15134, 16270, 17710, 18430, 18800, 19916, 21014, 21320
Offset: 1

Views

Author

Keywords

Comments

Intersection of A001043 and A087695. - Robert Israel, Oct 25 2017

Examples

			3+5=8,8-3=5(prime),8+3=11(prime),..
		

Crossrefs

Programs

  • Maple
    q:= 2; p:= 3;
    count:= 0:
    while count < 100 do
      q:= p; p:= nextprime(p);
      s:= q+p;
      if isprime(s-3) and isprime(s+3) then
        count:= count+1; A[count]:= s;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Oct 25 2017
  • Mathematica
    q=3;Select[Table[Prime[n]+Prime[n+1],{n,7!}],PrimeQ[ #-q]&&PrimeQ[ #+q]&]
    Select[Total/@Partition[Prime[Range[1400]],2,1],AllTrue[#+{3,-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2018 *)
Showing 1-5 of 5 results.