cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210473 Decimal expansion of Sum_{n>=1} 1/(prime(n)*prime(n+1)).

Original entry on oeis.org

3, 0, 1, 0, 9, 3, 1, 7, 6, 3, 5, 8, 3, 9, 9, 8, 9, 4
Offset: 0

Views

Author

M. F. Hasler, Jan 23 2013

Keywords

Comments

Sum of reciprocals of products of successive primes. Differs from A209329 only by the initial term 1/(2*3) = 1/6 = 0.16666...

Examples

			0.3010931763... = Sum_{n>=1} 1/(prime(n)*prime(n+1)).
= 1/(2*3) + 1/(3*5) + 1/(5*7)
+ 0.03731790933454338 (primes 10 < p(n+1) < 100)
+ 0.0017430141479028 (primes 100 < p(n+1) < 10^3)
+ 0.00011767024549033 (primes 10^3 < p(n+1) < 10^4)
+ 9.018426684045269 e-6 (primes 10^4 < p(n+1) < 10^5)
+ 7.3452282601302 e-7 (primes 10^5 < p(n+1) < 10^6)
+ 6.19161299373 e-8 (primes 10^6 < p(n+1) < 10^7)
+ 5.3439026467 e-9 (primes 10^7 < p(n+1) < 10^8)
+ 4.70035656 e-10 (primes 10^8 < p(n+1) < 10^9) + ...
		

Crossrefs

Programs

  • Mathematica
    digits = 10;
    f[n_Integer] := 1/(Prime[n]*Prime[n+1]);
    s = NSum[f[n], {n, 1, Infinity}, Method -> "WynnEpsilon", NSumTerms -> 2*10^6, WorkingPrecision -> MachinePrecision];
    RealDigits[s, 10, digits][[1]] (* Jean-François Alcover, Sep 05 2017 *)
  • PARI
    S(L=10^9,start=3)={my(s=0,q=1/precprime(start));forprime(p=1/q+1,L,s+=q*q=1./p);s} \\ Using 1./p is maybe a little less precise, but using s=0. and 1/p takes about 50% more time.
    
  • PARI
    {my( tee(x)=printf("%g,",x);x ); t=vector(8,n,tee(S(10^(n+1),10^n))); s=1/2/3+1/3/5+1/5/7; vector(#t,n,s+=t[n])} \\ Shows contribution of sums over (n+1)-digit primes (vector t) and the vector of partial sums; the final value is in s.

Formula

Equals 1/6 + A209329.

Extensions

Corrected and extended by Hans Havermann, Mar 17 2013 using the additional terms of A209329 from R. J. Mathar, Feb 08 2013

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021
Showing 1-2 of 2 results.