cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A033286 a(n) = n * prime(n).

Original entry on oeis.org

2, 6, 15, 28, 55, 78, 119, 152, 207, 290, 341, 444, 533, 602, 705, 848, 1003, 1098, 1273, 1420, 1533, 1738, 1909, 2136, 2425, 2626, 2781, 2996, 3161, 3390, 3937, 4192, 4521, 4726, 5215, 5436, 5809, 6194, 6513, 6920, 7339, 7602, 8213, 8492, 8865, 9154, 9917
Offset: 1

Views

Author

Keywords

Comments

Does an n exist such that n*prime(n)/(n+prime(n)) is an integer? - Ctibor O. Zizka, Mar 04 2008. The answer to Zizka's question is easily seen to be No: such an integer k would be positive and less than prime(n), but then k*(n + prime(n)) = prime(n)*n would be impossible. - Robert Israel, Apr 20 2015
Sums of rows of the triangle in A005145. - Reinhard Zumkeller, Aug 05 2009
Complement of A171520(n). - Jaroslav Krizek, Dec 13 2009
Partial sums of A090942. - Omar E. Pol, Apr 20 2015

Crossrefs

Cf. A005145 (primes repeated), A171520 (complement), A076146 (iterated).

Programs

Formula

a(n) = n * A000040(n) = n * A008578(n+1) = n * A158611(n+2). - Jaroslav Krizek, Aug 31 2009
a(n) = A007504(n) + A152535(n). - Omar E. Pol, Aug 09 2012
Sum_{n>=1} 1/a(n) = A124012. - Amiram Eldar, Oct 15 2020

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 from Jaroslav Krizek, Jan 27 2010

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025

A253634 Decimal expansion of Sum_{n>=1} 1/A033286(n)^2.

Original entry on oeis.org

2, 8, 4, 1, 7, 0, 7, 0, 5, 4, 7, 0, 8, 6, 8, 2, 5, 0, 1, 7, 7, 1, 4
Offset: 0

Views

Author

Pierre CAMI, Jan 07 2015

Keywords

Comments

The convergence is very slow, need to use the first 100000000 primes to obtain the correct value of the coefficient of 10^(-23).
The constant is in the interval [0.28417070547086825017714, 0.28417070547086825017743]; these safe limits are computed by accumulating in parallel the partial sum of the lower estimate 1/n^4 = Zeta(4). - R. J. Mathar, Feb 06 2015

Examples

			0.284170705470...
		

Crossrefs

Cf. A033286 (n*prime(n)), A124012.
Showing 1-4 of 4 results.