A209352 Number of initially rising meander words, where each letter of the cyclic 6-ary alphabet occurs n times.
1, 1, 16, 484, 17956, 749956, 33779344, 1603842304, 79171327876, 4026836863204, 209730177700096, 11135960392243600, 600800844868633600, 32853035097265158400, 1817225079550242841600, 101519847275313821814784, 5720749624907993103318916, 324836041052683988251601956
Offset: 0
Examples
a(0) = 1: the empty word. a(1) = 1 = |{abcdef}|. a(2) = 16 = |{ababcdcdefef, abafedcbcdef, abafefedcbcd, abafefedcdcb, abcbafedcdef, abcbafefedcd, abcbcdedefaf, abcbcdefafed, abcdcbafedef, abcdcbafefed, abcdcdefefab, abcdedcbafef, abcdefabcdef, abcdefafedcb, abcdefedcbaf, abcdefefabcd}|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
g:= proc(m, n, k) local h; h:= binomial(n-1, k); h^m +`if`(m<2, 0, h* g(m-1, n, n-k-2)) end: a:= n-> add(g(3, n, k), k=0..n)^2: seq(a(n), n=0..30);
-
Mathematica
g[m_, n_, k_] := g[m, n, k] = With[{h = Binomial[n - 1, k]}, h^m + If[m < 2, 0, h g[m - 1, n, n - k - 2]]]; a[n_] := Sum[g[3, n, k], {k, 0, n}]^2; a /@ Range[0, 30] (* Jean-François Alcover, May 14 2020, after Maple *)
Formula
a(n) = A197657(n-1)^2 for n>0, a(0) = 1.
a(n) ~ 3 * 2^(6*n - 4) / (Pi^2 * n^2). - Vaclav Kotesovec, May 14 2020
Comments