cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209357 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^(n+1)*A(x)) / (1 - x^n).

Original entry on oeis.org

1, 1, 3, 6, 14, 31, 72, 166, 390, 922, 2197, 5273, 12728, 30892, 75327, 184476, 453505, 1118798, 2768843, 6872437, 17103411, 42670102, 106697009, 267359854, 671260241, 1688411587, 4254084396, 10735614274, 27132998096, 68671994940, 174035109012, 441607820562
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 14*x^4 + 31*x^5 + 72*x^6 + 166*x^7 +...
where the g.f. satisfies the identity:
A(x) = (1+x^2*A(x))/(1-x) * (1+x^3*A(x))/(1-x^2) * (1+x^4*A(x))/(1-x^3) *...
A(x) = 1 + x*(1+x*A(x))/(1-x) + x^2*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^3*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(s*(1 + r*s)*Log[r]*(s*(1 + r*s)*(-QPochhammer[r]*(Log[1 - r] + Log[r] + QPolyGamma[0, 1, r]) + r*Log[r]*Derivative[0, 1][QPochhammer][r, r]) - r*Log[r]*Derivative[0, 1][QPochhammer][-r*s, r])) / (2*Pi*QPochhammer[r] * (r*s*Log[r]^2 + (1 + r*s)^2*QPolyGamma[1, Log[-r*s]/Log[r], r]))]} /. FindRoot[{s*(1 + r*s) == QPochhammer[-r*s, r]/QPochhammer[r], Log[1-r] + r*s*Log[r]/(1 + r*s) + QPolyGamma[0, Log[-r*s]/Log[r], r] == -Log[r]}, {r, 2/5}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Jun 10 2025 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n, (1+x^(m+1)*A)/(1-x^m+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*prod(k=1, m, (1+x^k*A)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = Sum_{n>=0} x^n*Product_{k=1..n} (1 + x^k*A(x))/(1-x^k) due to the q-binomial theorem.
a(n) ~ c * d^n / n^(3/2), where d = 2.6481816651621274063587047915... and c = 7.257947883786923940523402074... - Vaclav Kotesovec, Jun 10 2025