A209400 Number of subsets of {1,...,n} containing a subset of the form {k,k+1,k+3} for some k.
0, 0, 0, 0, 2, 7, 19, 46, 107, 242, 535, 1162, 2490, 5281, 11108, 23206, 48206, 99663, 205218, 421115, 861585, 1758249, 3580075, 7275377, 14759592, 29897683, 60481359, 122206014, 246665382, 497414751, 1002231335, 2017877779, 4060069150, 8164204342
Offset: 0
Examples
When n=4 the only subsets containing an {a,a+1,a+3} happen when a=1 with the two subsets {1,2,3,4} and {1,2,4}. Thus a(4)=2.
Links
- David Nacin, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,1,-1,-2).
Programs
-
Magma
I:=[0, 0, 0, 0, 2, 7]; [n le 6 select I[n] else 3*Self(n-1) - Self(n-2)-2*Self(n-3)+Self(n-4)-Self(n-5)-2*Self(n-6): n in [0..30]]; // G. C. Greubel, Jan 03 2018
-
Mathematica
LinearRecurrence[{3, -1, -2, 1, -1, -2}, {0, 0, 0, 0, 2, 7}, 40] CoefficientList[Series[x^4*(2+x)/(1-3*x+x^2+2*x^3-x^4+x^5+2*x^6), {x,0, 50}], x] (* G. C. Greubel, Jan 03 2018 *)
-
PARI
x='x+O('x^30); concat([0,0,0,0], Vec(x^4*(2+x)/(1-3*x+x^2+2*x^3-x^4+x^5+2*x^6))) \\ G. C. Greubel, Jan 03 2018
-
Python
#From recurrence def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:2, 5:7}): if n in adict: return adict[n] adict[n]=3*a(n-1)-a(n-2)-2*a(n-3)+a(n-4)-a(n-5)-2*a(n-6) return adict[n]
-
Python
#Returns the actual list of valid subsets def contains1101(n): patterns=list() for start in range (1,n-2): s=set() for i in range(4): if (1,1,0,1)[i]: s.add(start+i) patterns.append(s) s=list() for i in range(2,n+1): for temptuple in comb(range(1,n+1),i): tempset=set(temptuple) for sub in patterns: if sub <= tempset: s.append(tempset) break return s #Counts all such sets def countcontains1101(n): return len(contains1101(n))
Formula
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-4) - a(n-5) - 2*a(n-6), a(4)=2, a(5)=7, a(i)=0 for i<4.
G.f.: x^4*(2 + x)/(1 - 3*x + x^2 + 2*x^3 - x^4 + x^5 + 2*x^6) = x^4*(2 + x)/((1 - 2*x)*(1 - x - x^2 - x^4 - x^5)).
a(n) = 2^n - A164387(n).
Comments