A209408 Number of subsets of {1,...,n} containing {a,a+4} for some a.
0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784, 30208, 61440, 124416, 251328, 506712, 1020015, 2051015, 4119775, 8268215, 16582735, 33239558, 66599068, 133392344, 267099120, 534709192, 1070244924, 2141826898, 4285816671, 8575127217
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,-2,6,-2,-4,2,-6,2,4,1,-3, 1,2).
Programs
-
Magma
[2^n - Fibonacci(Floor(n/4) + 2)*Fibonacci(Floor((n + 1)/4) + 2)*Fibonacci(Floor((n + 2)/4) + 2)*Fibonacci(Floor((n + 3)/4) + 2): n in [0..30]]; // G. C. Greubel, Jan 03 2018
-
Mathematica
Table[2^n - Product[Fibonacci[Floor[(n + i)/4] + 2], {i, 0, 3}], {n, 0, 30}] LinearRecurrence[{3, -1, -2, -2, 6, -2, -4, 2, -6, 2, 4, 1, -3, 1, 2}, {0, 0, 0, 0, 0, 8, 28, 74, 175, 377, 799, 1673, 3471, 7192, 14784}, 30]
-
PARI
for(n=0,20, print1(2^n - fibonacci(floor(n/4) + 2)*fibonacci( floor((n + 1)/4) + 2)*fibonacci(floor((n + 2)/4) + 2)*fibonacci( floor((n + 3)/4) + 2), ", ")) \\ G. C. Greubel, Jan 03 2018
-
Python
#Returns the actual list of valid subsets def contains10001(n): patterns=list() for start in range (1,n-3): s=set() for i in range(5): if (1,0,0,0,1)[i]: s.add(start+i) patterns.append(s) s=list() for i in range(2,n+1): for temptuple in comb(range(1,n+1),i): tempset=set(temptuple) for sub in patterns: if sub <= tempset: s.append(tempset) break return s #Counts all such sets def countcontains10001(n): return len(contains10001(n)) #From recurrence def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:8, 6:28, 7:74, 8:175, 9:377, 10:799, 11:1673, 12:3471, 13:7192, 14:14784}): if n in adict: return adict[n] adict[n]=3*a(n-1)-a(n-2)-2*a(n-3)-2*a(n-4)+6*a(n-5)-2*a(n-6)-4*a(n-7)+2*a(n-8)-6*a(n-9)+2*a(n-10)+4*a(n-11)+a(n-12)-3*a(n-13)+a(n-14)+2*a(n-15) return adict[n]
Formula
a(n) = 2^n - A208741(n-1).
a(n) = 2^n - Product_{i=0..3} Fibonacci(floor((n + i)/4) + 2).
a(n) = 3*a(n-1) - a(n-2) -2*a(n-3) -2*a(n-4) + 6*a(n-5) - 2*a(n-6) - 4*a(n-7) + 2*a(n-8) - 6*a(n-9) + 2*a(n-10) + 4*a(n-11) + a(n-12) - 3*a(n-13) + a(n-14) + 2*a(n-15).
G.f.: x^5*(8 + 4 x - 2 x^2 - 3 x^3 - 2 x^4 - x^5 - x^6 - x^7 - 2 x^8 - x^9) / ((1 - x) (1 + x) (1 - 2 x) (1 + x^2) (1 - x - x^2) (1 + 3 x^4 + x^8)).
Comments