A209410 Number of subsets of {1,...,n} not containing {a,a+2,a+4} for any a.
1, 2, 4, 8, 16, 28, 49, 91, 169, 312, 576, 1056, 1936, 3564, 6561, 12069, 22201, 40826, 75076, 138096, 254016, 467208, 859329, 1580535, 2907025, 5346880, 9834496, 18088448, 33269824, 61192712, 112550881, 207013417, 380757169, 700321570, 1288092100
Offset: 0
Examples
For n=5, subsets containing {a,a+2,a+4} occur only when a=1. There are 2^2 subsets including {1,3,5}, thus a(5) = 2^5 - 4 = 28.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 2, 0, 2, 2, 0, -1, -1).
Programs
-
Magma
I:=[1, 2, 4, 8, 16, 28, 49, 91, 169]; [n le 9 select I[n] else Self(n-1)+2*Self(n-3)+2*Self(n-5)+2*Self(n-6)-Self(n-8)-Self(n-9): n in [1..30]]; // G. C. Greubel, Jan 05 2018
-
Mathematica
LinearRecurrence[{1, 0, 2, 0, 2, 2, 0, -1, -1}, {1, 2, 4, 8, 16, 28, 49, 91, 169}, 40]
-
PARI
x='x+O('x^30); Vec((1+x+2*x^2+2*x^3+4*x^4+2*x^5-x^6-2*x^7-x^8)/( (-1+x+x^2+x^3)*(-1-x^2-x^4+x^6))) \\ G. C. Greubel, Jan 05 2018
-
Python
#Returns the actual list of valid subsets def avoidscode(n,bitstring=(1,0,1,0,1)): patterns=list() for start in range (1,n-len(bitstring)+2): s=set() for i in range(len(bitstring)): if bitstring[i]: s.add(start+i) patterns.append(s) s=list() for i in range(sum(bitstring)): for smallset in comb(range(1,n+1),i): s.append(smallset) for i in range(sum(bitstring),n+1): for temptuple in comb(range(1,n+1),i): tempset=set(temptuple) for sub in patterns: if sub <= tempset: status=False break if status: s.append(tempset) return s #Counts all such sets def countavoidscode(n,bitstring=(1,0,1,0,1)): return len(avoidscode(n)) #From recurrence def a(n, adict={0:1, 1:2, 2:4, 3:8, 4:16, 5:28, 6:49, 7:91, 8:169}): if n in adict: return adict[n] adict[n]=a(n-1) + 2*a(n-3) + 2*a(n-5) + 2*a(n-6) - a(n-8) - a(n-9) return adict[n]
Formula
a(n) = 2^n - A209409(n).
a(n) = t[floor(n/2)+2]*t[floor((n+1)/2)+2] where t(n) is the n-th tribonacci number.
a(n) = a(n-1) + 2*a(n-3) + 2*a(n-5) + 2*a(n-6) - a(n-8) - a(n-9).
G.f.: (1 + 1*x + 2*x^2 + 2*x^3 + 4*x^4 + 2*x^5 - 1*x^6 - 2*x^7 - x^8)/((-1 + x + x^2 + x^3)*(-1 - x^2 - x^4 + x^6)).
Comments