cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209415 Triangle of coefficients of polynomials u(n,x) jointly generated with A209416; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 6, 1, 1, 6, 11, 10, 1, 1, 7, 21, 25, 15, 1, 1, 9, 30, 57, 50, 21, 1, 1, 10, 45, 99, 133, 91, 28, 1, 1, 12, 58, 168, 275, 280, 154, 36, 1, 1, 13, 78, 250, 523, 675, 546, 246, 45, 1, 1, 15, 95, 370, 885, 1433, 1509, 1002, 375, 55, 1, 1, 16, 120, 505, 1435, 2718, 3564, 3135, 1749, 550, 66, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012
Up to reflection at the vertical axis, the triangle of numbers given here coincides with the triangle given in A208334, i.e., the numbers are the same just read row-wise in the opposite direction. - Christine Bessenrodt, Jul 21 2012

Examples

			First five rows:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  6,  1;
  1,  6, 11, 10,  1;
First three polynomials v(n,x): 1, 1 + x, 1 + 3x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(1, 0, 1, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:
  1;
  1,   0;
  1,   1,   0;
  1,   3,   1,   0;
  1,   4,   6,   1,   0;
  1,   6,  11,  10,   1,   0;
  1,   7,  21,  25,  15,   1,   0;
  1,   9,  30,  57,  50,  21,   1,   0;
  1,  10,  45,  99, 133,  91,  28,   1,   0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209415 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209416 *)
    CoefficientList[CoefficientList[Series[(1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)

Formula

u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 02 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2).
T(n,k) = 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)