A209419 Triangle of coefficients of polynomials u(n,x) jointly generated with A209420; see the Formula section.
1, 1, 1, 2, 3, 1, 3, 8, 6, 1, 5, 17, 21, 10, 1, 8, 35, 58, 45, 15, 1, 13, 68, 144, 154, 85, 21, 1, 21, 129, 330, 452, 350, 147, 28, 1, 34, 239, 719, 1198, 1195, 714, 238, 36, 1, 55, 436, 1506, 2959, 3611, 2799, 1344, 366, 45, 1, 89, 785, 3063, 6930, 10005, 9537, 5985, 2376, 540, 55, 1
Offset: 1
Examples
First five rows: 1; 1, 1; 2, 3, 1; 3, 8, 6, 1; 5, 17, 21, 10, 1; First three polynomials v(n,x): 1, 1 + x, 2 + 3x + x^2.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209419 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209420 *) CoefficientList[CoefficientList[Series[(1*x - x^2*y)/(1 - x - x^2 - 2*y*x + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 26 2012
G.f.: x*(1 - x*y)/(1 - x - x^2 - 2*y*x + y^2*x^2). - G. C. Greubel, Jan 03 2018
Comments