cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209419 Triangle of coefficients of polynomials u(n,x) jointly generated with A209420; see the Formula section.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 8, 6, 1, 5, 17, 21, 10, 1, 8, 35, 58, 45, 15, 1, 13, 68, 144, 154, 85, 21, 1, 21, 129, 330, 452, 350, 147, 28, 1, 34, 239, 719, 1198, 1195, 714, 238, 36, 1, 55, 436, 1506, 2959, 3611, 2799, 1344, 366, 45, 1, 89, 785, 3063, 6930, 10005, 9537, 5985, 2376, 540, 55, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2012

Keywords

Comments

Column 1: Fibonacci numbers (A000045)
Alternating row sums: (1,0,0,0,0,0,0,0,0,0,0,0,...)
For a discussion and guide to related arrays, see A208510.
Triangle given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012

Examples

			First five rows:
  1;
  1,  1;
  2,  3,  1;
  3,  8,  6,  1;
  5, 17, 21, 10,  1;
First three polynomials v(n,x): 1, 1 + x, 2 + 3x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209419 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209420 *)
    CoefficientList[CoefficientList[Series[(1*x - x^2*y)/(1 - x - x^2 - 2*y*x + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)

Formula

u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 26 2012
G.f.: x*(1 - x*y)/(1 - x - x^2 - 2*y*x + y^2*x^2). - G. C. Greubel, Jan 03 2018