A209420 Triangle of coefficients of polynomials v(n,x) jointly generated with A209419; see the Formula section.
1, 2, 2, 3, 6, 3, 5, 14, 13, 4, 8, 30, 41, 24, 5, 13, 60, 109, 96, 40, 6, 21, 116, 262, 308, 196, 62, 7, 34, 218, 590, 868, 743, 364, 91, 8, 55, 402, 1267, 2240, 2413, 1604, 630, 128, 9, 89, 730, 2627, 5424, 7046, 5926, 3186, 1032, 174, 10, 144, 1310, 5299, 12516, 19040, 19382, 13255, 5928, 1617, 230
Offset: 1
Examples
First five rows: 1; 2, 2; 3, 6, 3; 5, 14, 13, 4; 8, 30, 41, 24, 5; First three polynomials v(n,x): 1, 2 + 2x, 3 + 6x + 3x^2.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209419 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209420 *) CoefficientList[CoefficientList[Series[x*(1 + x)/(1 - x - x^2 - 2*y*x + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2), T(1,0) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 26 2012
G.f.: x*(1 + x)/(1 - x - x^2 - 2*y*x + y^2*x^2). - G. C. Greubel, Jan 03 2018
Comments