A209422 Triangle of coefficients of polynomials v(n,x) jointly generated with A209415; see the Formula section.
1, 3, 5, 1, 9, 2, 1, 15, 6, 2, 1, 25, 13, 7, 2, 1, 41, 28, 16, 8, 2, 1, 67, 56, 38, 19, 9, 2, 1, 109, 109, 82, 49, 22, 10, 2, 1, 177, 206, 173, 112, 61, 25, 11, 2, 1, 287, 382, 352, 252, 146, 74, 28, 12, 2, 1, 465, 697, 701, 543, 347, 184, 88, 31, 13, 2, 1, 753, 1256, 1368, 1144, 784, 459, 226, 103, 34, 14, 2
Offset: 1
Examples
First five rows: 1; 3; 5, 1; 9, 2, 1; 15, 6, 2, 1; First three polynomials v(n,x): 1, 3, 5 + x.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209421 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209422 *) CoefficientList[CoefficientList[Series[(1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x]// Flatten (* G. C. Greubel, Jan 03 2018 *)
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + 3*t + (5 + x)*t^2 + ... . - G. C. Greubel, Jan 03 2018
Comments