cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A209425 Column 2 of triangle A209424.

Original entry on oeis.org

1, 12, 347, 20429, 1919660, 259227625, 47484618291, 11331926690549, 3416394867284954, 1269892206580345425, 570576180005762038644, 304859737124260849580998, 191049110542296621467314753, 138786261071300963667336947034, 115691448070469092032508527982414
Offset: 2

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^n)),n,x),2,y)}
    for(n=0,20,print1(a(n),", "))

A209426 Central terms of triangle A209424.

Original entry on oeis.org

1, 3, 347, 10707908, 72078431500368, 103279205595241909409817, 32276238007289208146779304321387283, 2246642168097747174860193404728752903216792387572, 35410884110668229233891981980646482609768612036854978171150794831
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(polcoeff(exp(sum(m=1,2*n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^(2*n))),2*n,x),n,y)}
    for(n=0,10,print1(a(n),", "))

A228899 Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^(k+1) * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 12, 1, 1, 10, 71, 76, 1, 1, 15, 281, 2153, 701, 1, 1, 21, 861, 29166, 129509, 8477, 1, 1, 28, 2212, 244725, 7664343, 12391414, 126126, 1, 1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1, 1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2013

Keywords

Comments

Note that the following g.f. does NOT yield an integer triangle: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^k * y^k ).

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 12, 1;
1, 10, 71, 76, 1;
1, 15, 281, 2153, 701, 1;
1, 21, 861, 29166, 129509, 8477, 1;
1, 28, 2212, 244725, 7664343, 12391414, 126126, 1;
1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1;
1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1; ...
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+12*y^2+y^3)*x^3 + (1+10*y+71*y^2+76*y^3+y^4)*x^4 + (1+15*y+281*y^2+2153*y^3+701*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x
+ (1 + 2^2*x + x^2)*x^2/2
+ (1+ 3^2*y + 3^3*y^2 + y^3)*x^3/3
+ (1+ 4^2*y + 6^3*y^2 + 4^4*y^3 + x^4)*x^4/4
+ (1+ 5^2*y + 10^3*y^2 + 10^4*y^3 + 5^5*y^4 + y^5)*x^5/5
+ (1+ 6^2*y + 15^3*y^2 + 20^4*y^3 + 15^5*y^4 + 6^6*y^5 + y^6)*x^6/6 +...
in which the coefficients form A219207(n,k) = binomial(n, k)^(k+1).
		

Crossrefs

Cf. A184730 (row sums), A181070 (antidiagonal sums), A060946 (diagonal).
Cf. related triangles: A219207, A209424, A228904.

Programs

  • PARI
    {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m, j)^(j+1)*y^j))+x*O(x^n)), n, x), k, y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Showing 1-3 of 3 results.