Original entry on oeis.org
1, 12, 347, 20429, 1919660, 259227625, 47484618291, 11331926690549, 3416394867284954, 1269892206580345425, 570576180005762038644, 304859737124260849580998, 191049110542296621467314753, 138786261071300963667336947034, 115691448070469092032508527982414
Offset: 2
-
{a(n)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^n)),n,x),2,y)}
for(n=0,20,print1(a(n),", "))
Original entry on oeis.org
1, 3, 347, 10707908, 72078431500368, 103279205595241909409817, 32276238007289208146779304321387283, 2246642168097747174860193404728752903216792387572, 35410884110668229233891981980646482609768612036854978171150794831
Offset: 0
-
{a(n)=polcoeff(polcoeff(exp(sum(m=1,2*n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^(2*n))),2*n,x),n,y)}
for(n=0,10,print1(a(n),", "))
A228899
Triangle defined by g.f. A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^(k+1) * y^k ), as read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 12, 1, 1, 10, 71, 76, 1, 1, 15, 281, 2153, 701, 1, 1, 21, 861, 29166, 129509, 8477, 1, 1, 28, 2212, 244725, 7664343, 12391414, 126126, 1, 1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1, 1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1
Offset: 0
This triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 12, 1;
1, 10, 71, 76, 1;
1, 15, 281, 2153, 701, 1;
1, 21, 861, 29166, 129509, 8477, 1;
1, 28, 2212, 244725, 7664343, 12391414, 126126, 1;
1, 36, 4998, 1477391, 218030412, 3875325345, 1699148352, 2223278, 1;
1, 45, 10242, 7017577, 3748460115, 448713017405, 3284369541969, 315158247170, 45269999, 1; ...
...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+6*y+12*y^2+y^3)*x^3 + (1+10*y+71*y^2+76*y^3+y^4)*x^4 + (1+15*y+281*y^2+2153*y^3+701*y^4+y^5)*x^5 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x)*x
+ (1 + 2^2*x + x^2)*x^2/2
+ (1+ 3^2*y + 3^3*y^2 + y^3)*x^3/3
+ (1+ 4^2*y + 6^3*y^2 + 4^4*y^3 + x^4)*x^4/4
+ (1+ 5^2*y + 10^3*y^2 + 10^4*y^3 + 5^5*y^4 + y^5)*x^5/5
+ (1+ 6^2*y + 15^3*y^2 + 20^4*y^3 + 15^5*y^4 + 6^6*y^5 + y^6)*x^6/6 +...
in which the coefficients form A219207(n,k) = binomial(n, k)^(k+1).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, x^m/m*sum(j=0, m, binomial(m, j)^(j+1)*y^j))+x*O(x^n)), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Showing 1-3 of 3 results.
Comments